994 resultados para EMISSION-LINE
Resumo:
The outer atmosphere of the sun called the corona has been observed during total solar eclipse for short periods (typically <6 min), from as early as the eighteenth century. In the recent past, space-based instruments have permitted us to study the corona uninterruptedly. In spite of these developments, the dynamic corona and its high temperature (1-2 million K) are yet to be Ally understood. It is conjectured that their dynamic nature and associated energetic events are possible reasons behind the high temperature. In order to study these in detail, a visible emission line space solar coronagraph is being proposed as a payload under the small-satellite programme of the Indian Space Research Organisation. The satellite is named as Aditya-1 and the scientific objectives of this payload are to study: (i) the existence of intensity oscillations for the study of wave-driven coronal heating; (ii) the dynamics and formation of coronal loops and temperature structure of the coronal features; (iii) the origin, cause and acceleration of coronal mass ejections (CMEs) and other solar active features, and (iv) coronal magnetic field topology and three-dimensional structures of CMEs using polarization information. The uniqueness of this payload compared to previously flown space instruments is as follows: (a) observations in the visible wavelength closer to the disk (down to 1.05 solar radii); (b) high time cadence capability (better than two-images per second), and (c) simultaneous observations of at least two spectral windows all the time and three spectral windows for short durations.
Resumo:
R-matrix calculations of electron impact excitation rates among the 2s(2)2p(2) P-3, D-1, S-1, and 2s2p(3) S-5 levels of N II are presented. These results are used in conjunction with other recent calculations of electron impact excitation rates and Einstein A-coefficients for N II to derive the emission-line ratio: ratio diagrams and where (R-1, R-2) (R-1, R-3), where R-1 = I(5756.2 Angstrom)/I(6549.9 + 6585.2 Angstrom), R-2 = I(2143.5 Angstrom)/I(6549.9 + 6585.2 Angstrom), and R-3 = I(2139.7 Angstrom)/I(6549.9 + 658.2 Angstrom), for a range of electron temperatures (T-e = 5000-20,000 K) and electron densities (N-e = 10(2)-10(7) cm(-3)) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of T-e and N-e from measurements of the [N II] lines in a spectrum. Plasma parameters deduced for a sample of gaseous nebulae, using observational data obtained from ground-based telescopes plus the International Ultraviolet Explorer and Hubble Space Telescope satellites, are found to show generally excellent internal consistency and to be in good agreement with the values of T-e and N-e estimated from other line ratios. These results provide observational support for the accuracy of the theoretical ratios and hence the atomic data adopted in their derivation. Theoretical ratios are also presented for the infrared line pair R-4 = I(122 mum)/I(205 mum), and the usefulness of R-4 as an electron density diagnostic is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 216 -320 Angstrom wavelength range. A comparison of these with an extensive dataset of solar active region, quiet- Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R-1 = I(216.94 Angstrom)/I(319.84 Angstrom) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 10(8)-10(11) cm(-3). However R-2 = I(276.85 Angstrom)/I(319.84 Angstrom) and R-3 = I(277.05 Angstrom)/I(319.84 Angstrom) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Angstrom lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Angstrom feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.
Resumo:
R-matrix calculations of electron impact excitation rates in N-like Mg vi are used to derive theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 269-403 Angstrom wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s(2)2p(3) S-4-2s2p(4) P-4 transitions at 399.28, 400.67, and 403.30 Angstrom, and the 2s(2)2p(3) P-2-2s2p(4) D-2 lines at 387.77 and 387.97 Angstrom. However, intensities for the other lines attributed to Mg vi in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg vi lines in the SERTS spectrum, such as 291.36 and 293.15 Angstrom, are judged to be noise, while others (including 349.16 Angstrom) appear to be blended.
Resumo:
New R-matrix calculations of electron impact excitation rates for Fe XI are used to determine theoretical emission line ratios applicable to solar and stellar coronal observations. These are subsequently compared to solar spectra of the quiet Sun and an active region made by the Solar EUV Rocket Telescope and Spectrograph (SERTS-95), as well as Skylab observations of two flares. Line blending is identified, and electron densities of 10(9.3), 10(9.7), greater than or equal to 10(10.8), and greater than or equal to 10(11.3) cm(-3) are found for the quiet Sun, active region, and the two flares, respectively. Observations of the F5 IV-V star Procyon, made with the Extreme Ultraviolet Explorer (EUVE) satellite, are compared and contrasted with the solar observations. It is confirmed that Procyon's average coronal conditions are very similar to those seen in the quiet Sun, with N-e = 10(9.4) cm(-3). In addition, although the quiet Sun is the closest solar analog to Procyon, we conclude that Procyon's coronal temperatures are slightly hotter than solar. A filling factor of 25(-12)(+38)% was derived for the corona of Procyon.
Resumo:
In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae (SNe), we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O ] ??6300, 6364 feature in all spectra, with the position, full width at half maximum and intensity of the ?6300 Gaussian as free parameters, and the ?6364 Gaussian added appropriately to account for the doublet nature of the [O ] feature. On the basis of the best-fitting parameters, the objects are organized into morphological classes, and we conclude that at least half of all Type Ib/c SNe must be aspherical. Bipolar jet models do not seem to be universally applicable, as we find too few symmetric double-peaked [O ] profiles. In some objects, the [O ] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity and possibly accompanied by neutron-star kicks to assure momentum conservation. At phases earlier than ~200 d, a systematic blueshift of the [O ] ??6300, 6364 line centroids can be discerned. Residual opacity provides the most convincing explanation of this phenomenon, photons emitted on the rear side of the SN being scattered or absorbed on their way through the ejecta. Once modified to account for the doublet nature of the oxygen feature, the profile of Mg i] ?4571 at sufficiently late phases generally resembles that of [O ] ??6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta. © 2009 RAS.
A comparison of theoretical Mg VI emission line strengths with active-region observations from SERTS
Resumo:
R-matrix calculations of electron impact excitation rates in N-like Mg VI are used to derive theoretical electron-density-sensitive emission line ratios involving 2s22p3 - 2s2p4 transitions in the 269-403 Å wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s22p3 4S - 2s2p 4 4p transitions at 399.28, 400.67, and 403.30 Å, and the 2s22p3 2p - 2s2p4 2D lines at 387.77 and 387.97 Å. However, intensities for the other lines attributed to Mg VI in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg VI lines in the SERTS spectrum, such as 291.36 and 293.15 Å, are judged to be noise, while others (including 349.16 Å) appear to be blended.
Resumo:
We present optical and ultraviolet spectra, light curves, and Doppler tomograms of the low-mass X-ray binary EXO 0748-676. Using an extensive set of 15 emission-line tomograms, we show that, along with the usual emission from the stream and ``hot spot,'' there is extended nonaxisymmetric emission from the disk rim. Some of the emission and Hα and Hβ absorption features lend weight to the hypothesis that part of the stream overflows the disk rim and forms a two phase medium. The data are consistent with a 1.35 Msolar neutron star with a main-sequence companion and hence a mass ratio q~0.34.
Resumo:
Flickering is a phenomenon related to mass accretion observed among many classes of astrophysical objects. In this paper we present a study of flickering emission lines and the continuum of the cataclysmic variable V3885 Sgr. The flickering behavior was first analyzed through statistical analysis and the power spectra of lightcurves. Autocorrelation techniques were then employed to estimate the flickering timescale of flares. A cross-correlation study between the line and its underlying continuum variability is presented. The cross-correlation between the photometric and spectroscopic data is also discussed. Periodograms, calculated using emission-line data, show a behavior that is similar to those obtained from photometric datasets found in the literature, with a plateau at lower frequencies and a power-law at higher frequencies. The power-law index is consistent with stochastic events. The cross-correlation study indicates the presence of a correlation between the variability on Ha and its underlying continuum. Flickering timescales derived from the photometric data were estimated to be 25 min for two lightcurves and 10 min for one of them. The average timescales of the line flickering is 40 min, while for its underlying continuum it drops to 20 min.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
Emission line galaxies are the most easily detected and studied objects in the high redshift Universe. They are being used to trace the evolution of critical observables of the Universe such as Star Formation Rate densities, starburst properties and abundances. Most of the research is being done using [OII]3727 and UV lines, but Hα is still one the best tracers for Star Formation Rate and physical properties of current star-forming galaxies. As a complementary contribution to studies of galaxy evolution, our team has focused into a long-term project to study the population of Hα-selected star-forming galaxies of the Universe at different redshifts. In 1995 we first determined the local Hα luminosity function, and from it the Star Formation Rate density (SFRd) of the local Universe. We then, using narrow-band imaging in the optical, extended this measurement to z ≃ 0.24 and z ≃ 0.4. Working in the near-infrared, GTC will be a very powerful tool to study the evolution of the Hα emission-line galaxy populations at different redshifts. We will both quantify the SFRd evolution and characterize the star-forming galaxy populations by directly comparing the same observables at all redshifts up to z ≃ 2.5.
Resumo:
Includes bibliographical references
Resumo:
SHARDS is an unbiased ultra-deep spectro-photometric survey with GTC@OSIRIS aimed at selecting and studying massive passively evolving galaxies at z=1.0-2.3 using a set of 24 medium-band filters (FWHM~17 nm) at 500-950 nm in GOODS-N. Our observing strategy is optimized to detect at z>1 the prominent Mg absorption feature at rest-frame ~ 280 nm, a distinctive, necessary, and sufficient feature of evolved stellar populations. Nonetheless, the data quality allow a plethora of studies on galaxy populations, including Emission Lines Galaxies (ELGs) about which we have started our first science verification project presented in this contribution.