1000 resultados para EMBRYO PRODUCTION
Resumo:
Background: The establishment of an in vitro production (IVP) of embryo in swine allows the generation of embryos with the same quality as in vivo produced embryos with less costs and time. In order to achieve successful fertilization under normal circumstances in vivo, mammalian spermatozoa must first undergo capacitation and then acrosome reaction. The purpose of this study was compared the efficacious of IP/CFDA fluorescence and Coomassie Blue G (CB) staining to detect capacitated sperm cells in refrigerated and fresh semen. Morever, it was investigated the efficacious of caffeine and chondroitin sulphate to promote in vitro sperm capacitation and in vitro embryo produced (IVP) of swine embryos. Materials, Methods & Results: A sperm-rich fraction from ejaculate was obtained using the gloved-hand method and the gel-free fraction was separated using sterile gauze. The semen was diluted in BTS at a final concentration of 1.5 x 10(8) cells/mL. The sperm suspension was incubated for 2 h at 25 degrees C, refrigerated and maintained for 1 h at 15-18 degrees C (refrigerated group) or used immediately (fresh group). Sperm capacitation was assessed by IP/CFDA fluorescence and CB staining for both fresh and refrigerated semen. For PI/CFDA evaluation, a final solution containing 1.7 mM formaldehyde, 7.3 mM PI and 20 mM CFDA in 950 mu L saline was prepared. In the dark, 40 mu L PI/CFDA final solution was added to 10 mu L semen and after 8 min, slides were analyzed on epifluorescence microscopy. For CB evaluation, sperm cells were fixed in 4% paraformaldehyde for 10 min and centrifuged twice at 320 x g in ammonium acetate pH 9 for 8 min. A smear was made and stained with 2.75 mg/mL CB in solution containing 12.5% methanol, 25% glacial acetic acid and 62.5% water, for 2 min. The smear was washed in running water, air dried and sealed with Permount (R), diluted 2:1 in xilol to avoid staining oxidation. Our results showed that refrigeration did not affect sperm capacitation and comparing staining methods, the PI/CFDA combination was more efficient to detect capacitated sperm, when compared to CB staining. In experiment 2, we evaluated the effect of different incubation time (1 - 5 h) with chondroitin sulfate and caffeine on sperm capacitation. For in vitro fertilization, oocytes were obtained from slaughterhouse ovaries. Oocytes with a thick and intact cumulus oophurus layer and cytoplasm with homogenous granules were selected for in vitro maturation for 44 h. According to the results of experiment 2, it was used for in vitro fertilization refrigerated semen was capacitated with 50 mu g/mL chondroitin sulfate for 2 h or capacitated with 5 mu g/mL caffeine for 3 h. Six hours after insemination, cumulus oophorus cells were mechanically removed and oocytes were washed and incubated in microdrops of culture medium. Embryo development after fertilization with sperm capacitated with caffeine or chondroitin sulfate was evaluated on days 3, 5 and 7 of culture. No differences were observed in days 3 or 5 of in vitro culture. However, it was observed an increase on blastocyst rate on Day 7 of culture when caffeine was used as the capacitor agent. Discussion: Molecular basis of sperm capacitation is still poor understood. Sperm capacitation can occur in vitro spontaneously in defined media without addition of biological fluids. We observed that sperm capacitation increased as incubation period enlarged and it was observed using Coomassie blue G and PI/CFDA for fresh semen and for refrigerated semen. It can be concluded that the cooling of semen did not change their pattern of sperm capacitation and this is best assessed by IP/CFDA than by CB. In addition to the use of caffeine in sperm capacitation produces more blastocysts than the chondroitin sulfate after in vitro fertilization.
Resumo:
Aiming to achieve the ideal time of ovum pick-up (OPU) for in vitro embryo production (IVP) in crossbred heifers, two Latin square design studies investigated the effect of ovarian follicular wave synchronization with estradiol benzoate (EB) and progestins. For each experiment, crossbred heifers stage of estrous cycle was synchronized either with a norgestomet ear implant (Experiment 1) or a progesterone intravaginal device (Experiment 2) for 7d, followed by the administration of 150 mu g D-cloprostenol. On Day 7, all follicles >3 mm in diameter were aspirated and implants/devices were replaced by new ones. Afterwards, implant/device replacement was conducted every 14 d. Each experiment had three treatment groups. In Experiment I (n = 12), heifers in Group 2X had their follicles aspirated twice a week and those in Groups 1X and 1X-EB were submitted to OPU once a week for a period of 28 d. Heifers from Group 1X-EB also received 2 mg EB i.m. immediately after each OPU session. In Experiment 2 (n = 11), animals from Group 0EB did not receive EB while heifers in Groups 2EB and 5EB received 2 and 5 mg of EB respectively, immediately after OPU. The OPU sessions were performed once weekly for 28 d. Therefore, in both experiments, four OPU sessions were performed in heifers aspirated once a week and in Experiment 1, eight OPU sessions were done in heifers aspirated twice a week. Additionally, during the 7-d period following follicular aspiration, ovarian ultrasonography examinations were conducted to measure diameter of the largest follicle and blood samples were collected for FSH quantification by RIA. In Experiment 1, all viable oocytes recovered were in vitro matured and fertilized. Results indicated that while progestin and EB altered follicular wave patterns, this treatment did not prevent establishment of follicular dominance on the ovaries of heifers during OPU at 7-d intervals. Furthermore, the proposed stage of follicular wave synchronization strategies did not improve the number and quality of the recovered oocytes, or the number of in vitro produced embryos. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the effect of bovine somatotropin (bST) on ovarian follicular population in buffalo heifers and its influence on oocyte quality, recovery rates and in vitro embryo production. We tested the hypothesis that bST treatment in buffalo females submitted to an ovum pick-up (OPU) program Would improve the number of follicles recruited, oocyte quality and in vitro embryo production. A total of 10 heifers were assigned into two treatment groups: group bST (n = 5; receiving 500 mg of bST in regular intervals) and control group (n = 5; without additional treatment). Both groups were subjected to OPU sessions twice a week (every 3 or 4 days), for a total of 10 sessions per female, although due to procedural problems, only the first five OPU sessions produced embryos. The number of follicles and the diameters were recorded at all OPU sessions. The harvested oocytes were counted and classified according to their quality as either A, B, C, D or E, with A and B considered good quality. Cleavage and blastocyst production rates were evaluated 2 and 7 days after in vitro fertilization, respectively. The bST treatment increased the total number of antral follicles (> 3 mm in diameter; 12.2 compared with 8.7: p, < 0.05) and of small antral follicles (< 5 mm; 9.1 compared with 6.5; p < 0.05) per OPU session. The bST also tended to increase the number of oocytes recovered per session (5.2 compared with 4.1; p = 0.07), and enhanced the percentage of good quality oocytes (48.8% compared with 40.6%; p = 0.07), bST showed no effect on cleavage and blastocyst production rates (p > 0.05). The significant effects of performing repeated OPU sessions were decreasing the follicular population (p < 0.001) as well as the number of follicles aspirated (p < 0.001), and oocytes recovered (p < 0.02). In conclusion, bST treatment improves the follicular population, demonstrating its possible application in buffalo donors submitted to OPU programs. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles
Resumo:
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)