999 resultados para ELONGATIONAL FLOW


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The morphology of PE/CL nanocomposite samples subjected to convergent flows is studied. Elongational flow – the typical flow involved in spinning and film-blowing processing operations – significantly increases with the reduction of the capillary diameter. The values of the convergent extensional stress (calculated by Cogswell's formula) for the PE/CL systems, for all the adopted capillary geometries, are greater than the calculated values for pure polyethylene. The applied convergent flow, at the entrance of the capillary, is able to change the clay morphology and consequently the final material properties on the PE/CL system with limited affinity between the matrix and organo-modified clay particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drop breakup inviscous liquids in agitated vessels occurs in elongational flow around impeller blade edges. The drop size distributions measured over extended periods for impellers of different sizes show that breakup process continues up to 15-20 h, before a steady state is reached. The size distributions evolve in a self-similar way till the steady state is reached. The scaled size distributions vary with impeller size and impeller speed, in contrast with the near universal scaling known for drop breakup in turbulent flows. The steady state size of the largest drop follows inverse scaling with impeller tip velocity. The breadth of the scaled size distributions also shows a monotonic relationship with impeller tip velocity only. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development and growth of microfluidics has stimulated interest in the behaviour of complex liquids in micro-scale geometries and provided a rich platform for rheometric investigations of non-Newtonian phenomena at small scales. Microfluidic techniques present the rheologist with new opportunities for material property measurement and this review discusses the use of microfluidic devices to measure bulk rheology in both shear and extensional flows. Capillary, stagnation and contraction flows are presented in this context and developments, limitations and future perspectives are examined. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal crystallization kinetics under shear in the melt of iPP was investigated by optical microscopy. It appears that shearing from 200 to the crystallization temperatures enhanced the kinetics, but the shear effect was not obvious if the melt of iPP was sheared only at 200. The experiment results show that relaxation plays an important role during crystallization, and that spherulite growth rates increased with shear rates and were governed by relaxation. The effect of flow on the crystallization kinetics can be understood by considering that the increase of the degree of order due to flow results is an effective change of the melt free energy. The Laurizen-Hoffman theory and the DE-IAA model were used to describe the shear-induced crystallization kinetics of iPP excellently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.