999 resultados para ELEMENT ABUNDANCES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boninites are unusual high MgO-high SiO2 volcanic rocks found in several western Pacific island arcs. Their high Mg/(Mg + total Fe) (0.55-0.83) and compatible element contents (Ni = 70-450 ppm, Cr = 200-1800 ppm) indicate equilibration with mantle peridotite, but their low TiO2 contents (0.1-0.5%) indicate severe depletion of this source. K, Rb, Sr and Ba abundances in boninites are typical of primitive arc basalts, but ratios such as Ti/Zr and La/Yb are variable (Ti/Zr = 23-67, (La/Yb)e.f. = 0.6-4.7). Evidence for both enrichment and depletion of incompatible elements suggests that boninites are derived from refractory peridotite which has been metasomatically enriched in LREE, Zr, Sr, Ba and alkalis. Wide variations in 143Nd/144Nd (0.51262-0.51296) are correlated with La/Sm, Sm/Nd and Ti/Zr, which enables identification of components in the boninite source. Possible LREE depleted components have relative REE and Ti abundances like those in depleted peridotites and high 143Nd/144Nd ratios which reach MORB-like values. Possible LREE enriched components have relative REE abundances similar to those in metasomatized mantle peridotite nodules, and low 143Nd/144Nd ratios which indicate either sedimentary sources or mantle sources with recent to ancient LREE enrichment. Relative abundances of Ba and Sr in boninites decrease with increasing LREE enrichment and suggest a non-sedimentary source for the LREE enriched material. Enrichment in Ba, Sr and alkalis may result from a third component derived from subducted oceanic crust. Two models can account for the successive generation of boninites and arc tholeiites within a single area: 1) boninites can be derived from the peridotite residue of earlier arc tholeiite generation which is metasomatically enriched in LREE before boninite volcanism, or 2) arc tholeiites and boninites can be derived from a variably depleted peridotite source which has been pervasively enriched in LREE. Areas of fertile peridotite would yield tholeiites while refractory areas would yield boninites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

REE abundances in gabbros and peridotites from Site 334 of DSDP Leg 37 show that these rocks are cumulates produced by fractional crystallization of a primitive oceanic tholeiite magma. They may be part of a layered oceanic complex. The REE distributions in the residual liquids left after such a fractionation are similar to those of incompatible element-depleted oceanic tholeiites. The REE data indicate that the basalts which overlie the gabbro-peridotite complex, are not genetically related to plutonic rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New data on Ru/Ir abundance ratios are presented for nonmarine (Hell Creek, Montana; Frenchman River, Saskatchewan) and marine Cretaceous-Tertiary boundary sites (Brazos River, Texas; Beloc, Haiti; DSDP 577 and DSDP 596). The Ru/Ir ratio varies from 0.5 to 1 within 4000 km of Chicxulub and increases to 2-3 at paleodistances (65 Ma) of up to 12,000 km from the impact site. For CI chondrites, Ru/Ir = 1.5. A ballistic model of ejecta cloud cooling and expansion, which employs the available vapor-pressure versus temperature data for Ru and It, predicts qualitatively similar global variation in the Ru/Ir ratio but by only a factor of 1.5. We infer that several other factors, such as remobilization of PGE during diagenesis, preferential oxidation of Ru, condensation kinetics and atmospheric chemical and circulation processes, may account for the observed larger Ru/Ir variation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth element and Nd isotopic data for ten representative samples of Lower Cretaceous to Miocene pelagic sediments from the western Pacific indicate a wide range of compositions for sediments being subducted beneath the Mariana and Volcano arcs. All samples are enriched in light rare earth elements and show negative Eu and Ce anomalies. The values of e-Nd range from +0.6 to -7.3. These data are used to calculate the Bulk Western Pacific Sediment (BWPS), which is characterized by low Sr/Nd (10), Ba/La (13), and e-Nd (-5.2) and high 87Sr/86Sr (0.7078) compared to that of Mariana and Volcano arc lavas. This composite sediment is used to refine a mixing model for the origin of Mariana and Volcano arc melts. Some lavas from the northern Mariana Arc have Ba/La higher than that of BWPS, which indicates that a third component is required. The high Ba/La in the mantle source for these lavas is interpreted to result from multiple episodes of fluid fractionation. The mixing model indicates that a minor amount of sediment and a low proportion of metasomatic fluid fluxes the mantle source at a late stage when the subarc mantle is already highly metasomatized. This model also suggests that the mantle source for arc melts is affected more by metasomatic fluids than by melting or bulk mixing of sediments.