996 resultados para ELECTRON-PHONON


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A remarkable hardening (similar to 30 cm(-1)) of the normal mode of vibration associated with the symmetric stretching of the oxygen octahedra for the Ba2FeReO6 and Sr2CrReO6 double perovskites is observed below the corresponding magnetic ordering temperatures. The very large magnitude of this effect and its absence for the antisymmetric stretching mode provide evidence against a conventional spin-phonon coupling mechanism. Our observations are consistent with a collective excitation formed by the combination of the vibrational mode with oscillations of Fe or Cr 3d and Re 5d occupations and spin magnitudes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A(g) symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B-g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving pi and sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon dispersions and push the superconducting critical temperature above 90 K. As evidence of graphane was recently reported, and doping of related materials such as graphene, diamond, and carbon nanostructures is well established, superconducting graphane may be feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform Raman scattering experiments on natural graphite in magnetic fields up to 45 T, observing a series of peaks due to interband electronic excitations over a much broader magnetic field range than previously reported. We also explore electron-phonon coupling in graphite via magnetophonon resonances. The Raman G peak shifts and splits as a function of magnetic field, due to the magnetically tuned coupling of the E 2g optical phonons with the K- and H-point inter-Landau-level excitations. The analysis of the observed anticrossing behavior allows us to determine the electron-phonon coupling for both K- and H-point carriers. In the highest field range (>35 T) the G peak narrows due to suppression of electron-phonon interaction. © 2012 American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.