996 resultados para ELECTRON-EXCHANGE LUMINESCENCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and electronic properties of perylene diimide liquid crystal PPEEB are studied using ab initio methods based on the density functional theory (I)FT). Using available experimental crystallographic data as a guide, we propose a detailed structural model for the packing of solid PPEEB. We find that due to the localized nature of the band edge wave function, theoretical approaches beyond the standard method, such as hybrid functional (PBE0), are required to correctly characterize the band structure of this material. Moreover, unlike previous assumptions, we observe the formation of hydrogen bonds between the side chains of different molecules, which leads to a dispersion of the energy levels. This result indicates that the side chains of the molecular crystal not only are responsible for its structural conformation but also can be used for tuning the electronic and optical properties of these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic and inelastic scattering of ortho-positronium (Ps) by the hydrogen atom have been investigated using a three-Ps-state close-coupling approximation. The higher (n greater than or equal to 3) excitations and ionization of the Ps atom are treated within the framework of the Born approximation. In both cases the effect of electron exchange has been included by a parameter-free nonlocal model potential derived from an antisymmetrization of the wavefunction followed by the removal of nonorthogonality. Calculations are reported of scattering lengths,phase shifts, and of elastic, Ps excitation, and total cross sections. The trend of present target elastic total cross section agrees qualitatively with available experimental results on Ps-impact scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of a suitable nonlocal model potential for electron exchange is presented, checked with electron-hydrogen and electron-helium scattering, and applied to the study of elastic and inelastic scattering and ionization of orthopositronium (Ps) by helium. The elastic scattering and the n=2 excitations of Ps are investigated using a three-Ps-state close-coupling approximation. The higher (n greater than or equal to 3) excitations and ionization of Ps atoms are treated in the framework of the Born approximation with present exchange. Calculations are reported of phase shifts and elastic, Ps excitation, and total cross sections. The present target elastic total cross section agrees well with experimental results at thermal to medium energies. [S1050-2947(99)04201-8].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peroxyoxalate system is still one of the most efficient chemiluminescence reactions and the only one supposed to involve the "Chemically Initiated Electron Exchange Luminescence - CIEEL" mechanism, with proved high efficiency. Besides the academic interest in the elucidation of the mechanism of this complex reaction, the peroxyoxalate system has found a variety of applications in analytical chemistry. This review contains (i) a short introduction to basic concepts in chemiluminescence, (ii) a critical summary of mechanistic studies on the peroxyoxalate reaction, (iii) and some examples of analytical applications. Although there are some recent reviews on chemiluminescence, no specific critical revision on mechanistic and analytical features of the peroxyoxalate system has been published.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review article, we give a general introduction on the mechanisms involved in organic chemiluminescence, where three basic models for excited state formation are presented. The chemiluminescence properties of 1,2-dioxetanes - four membered ring peroxides - are briefly outlined in the second part. In the main part, the mechanisms involved in the decomposition of 1,2-dioxetanes and analogous peroxides are discussed: (i) the unimolecular decomposition of 1,2-dioxetanes; (ii) the electron transfer catalyzed decomposition of peroxides by an intermolecular CIEEL (Chemically Initiated Electron Exchange Luminescence) mechanism; (iii) 1,2-dioxetane decomposition catalyzed by an intramolecular electron transfer mechanism (intramolecular CIEEL). Special emphasis is given to the latter subject, where recent examples with potential analytical applications are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolccular decomposition of this intermediate (Delta H(double dagger) = 11.2 kcal mol(-1); Delta S(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (Delta H(double dagger) = 4.2 kcal mol(-1); Delta S(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and study of the chemiluminescence parameters and thermal stability of 1,2-dioxetanes containing a spirofenchyl substituent are reported. Three fenchyl-substituted 1,2-dioxetanes were synthesized by photooxygenation of the corresponding alkenes, obtained by Barton-Kellogg olefination of the readily available (-)-fenchone. The fenchyl-substituted 1,2-dioxetanes showed thermal stabilities similar to those of the corresponding spiroadamantyl-substituted derivatives, although being slightly more labile with respect to unimolecular decomposition than the latter derivatives, which are widely utilized as labels in a great variety of chemiluminescent immunoassays. Fluoride induced decomposition of one triggerable fenchyl 1,2-dioxetane derivative showed kinetic parameters similar to those of the corresponding adamantyl-substituted derivative. The chemiluminescence quantum yields in the one percent range are also similar to that of other widely utilized chemiluminescence systems as the luminol reaction. These results indicate that fenchyl-substituted 1,2-dioxetanes can potentially be utilized as a cheaper alternative to substitute the corresponding spiroadamantyl derivatives in bioanalytical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Almost fifty years after the discovery of the peroxyoxalate reaction by E. A. Chandross in the early nineteen sixties, this review article intends to give a general overview on mechanistic aspects of this system and to describe the principles of its analytical application. After a short general introduction on the principles of chemiluminescence and the history of peroxyoxalate discovery, mechanistic aspects of high-energy intermediate formation, its structure and its reaction with an activator in the peroxyoxalate system are discussed. Finally, analytical applications of peroxyoxalate chemiluminescence are exemplified using representative recent examples, including oxalic acid detection in biological samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Phi(s)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Phi(s) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic. peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Phi(s) approximate to 50%), with the notable exception of the peroxyoxalate reaction (Phi(s) approximate to 60%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, alpha-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acc. Chem. Res., 2006, 39 (10), pp 788–796 DOI: 10.1021/ar050104k

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Highly transparent, luminescent and biocompatible ZnO quantum dots were prepared in water, methanol, and ethanol using liquid-phase pulsed laser ablation technique without using any surfactant. Transmission electron microscopy analysis confirmed the formation of good crystalline ZnO quantum dots with a uniform size distribution of 7 nm. The emission wavelength could be varied by varying the native defect chemistry of ZnO quantum dots and the laser fluence. Highly luminescent nontoxic ZnO quantum dots have exciting application potential as florescent probes in biomedical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We perform a three-positronium (Ps) state [Ps(ls,2s,2p)] coupled-channel calculation of Ps-H-2 scattering including the effect of electron exchange. At medium energies, higher excitations and ionization of Ps are treated within the framework of the first Born approximation. In both cases exchange is included using a recently proposed nonlocal model exchange potential which is free of non-orthogonality problems common in the usual antisymmetrization scheme. The present total cross sections at low and medium energies are in encouraging agreement with experiment.