928 resultados para ELECTROLUMINESCENT DEVICES
Resumo:
With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.
Resumo:
In this study, we investigated the dependence of electroluminescence (EL) efficiency on carrier distribution in the light-emitting layer (EML) of the device based on Eu(TTA)(3)phen (TTA = thenoyltrifluoroacetone, phen = 1, 10-phenanthroline) doped 4,4'-N,N'-dicarbazole- biphenyl (CBP) system. We found that EL efficiency increases monotonously with increasing hole injection even when holes are the majority carriers. This phenomenon was attributed to the accumulation of holes in EML, which improves the balance of holes and electrons on Eu(TTA)(3)phen molecules, thus enhancing the EL efficiency.
Resumo:
Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)
Resumo:
Two kinds of carbazole-based molecules connected with diphenylamine and carbazole are synthesized by modified Ullmann reaction. Comparative study on their thermal stability, redox behavior, hole injection and transport properties are present. The results demonstrate that the carbazole-based molecules are very promising hole-transporting materials for electroluminescent devices.
Resumo:
Organic electroluminescent devices with a structure of ITO/ploy (9-vinylcarbazole)/tris (8-hydroxyquinoline) aluminum (Alq3)/Mg:Ag are fabricated at different substrate temperatures (77, 298, and 438 K) during Alq3 deposition. It is found that the surface morphologies of Alq3 thin films greatly affect the I-V characteristics of the devices by the contact area between metal cathode and light-emitting layer. There is an increase in the luminous efficiency of the devices in the order 77 K < 298 K < 438 K. We attribute this trend to different structures of Alq3 thin films. (C) 2001 American Institute of Physics.
Resumo:
A navel thermally stable terbium carboxylate complex, Tb(MTP)(3)(phen) (MTP=monotetradecyl phthalate, phen=1,10-phehanthroline), was synthesized and characterized. The device structure of glass substrate/indium-tin-oxide/poly(p-phenylenevinylene) (PPV)/poly (N-vinycarbazole) (PVK):Tb(MTP)(3)(phen): 1,3,4-oxadizole derivative (PBD)/tris(8-hydroxyquinoline) (Alq(3))/aluminum (Al) was employed to study the electroluminescent properties of Tb(MTP)(3)(phen). A green emission with extremely sharp spectral band of less than 10 nm at 544 nm peak wavelength was observed. A maximum luminance of 152 cd/m(2) and an external quantum efficiency of 0.017% were achieved at a drive voltage of 24 V. A possible mechanism of energy transfer based on the polymer doped with lanthanide organic complex was also proposed.
Resumo:
An Electroluminescent device with PVK film doped with Eu(TTA)(3) Phen and PBD was fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK : Eu(TTA)3 Phen : PBD/Alq(3)/Al was employed. A sharply red electroluminescence with a maximum luminance of 56. 8 cd/m(2) at 48 V was achieved.
Resumo:
Electroluminescent devices with PVK film doped with monohexadecyl phthalate terbium and PBD were fabricated. The device structure of glass substrate/ITO/PPV/PVK:Tb(MHP)(3):PBD/Alq(3)/Al was employed. The emissive layer was formed by a spin-casting technique. The EL cells exhibited characteristic emission of terbium ions with a maximum luminance of 74 cd/m(2) at 18 V. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Eu3+ narrow band emitting EL device with PPV, Alq(3) as hole and electron transportation layers has been prepared. The emitting layer, which consists of PVK, Eu(DBM)(3) and PBD is formed by spin-casting method. A maximum luminance of 52cd.m(-2) is achieved from the device.
Resumo:
Electroluminescent devices with PVK film doped with Eu(DBM)(3)(phen) and PBD were fabricated. The device structure of glass substrate/indium-tin-oxide/PPV/PVK:Eu(DBM)(3)-(phen):PBD/Alq(3)/Al was employed. The emissive layer was formed by spin-casting method. A sharply red electroluminescence with a maximum luminance of 114.4 cd/m(2) was achieved at 42 V.
Resumo:
Bright blue electroluminescent devices have been fabricated using poly (N-vinylcarbazole) (PVK) doped with perylene as the emissive layer, poly(p-phenylenevinylene) (PPV) as the hole-transporting layer, 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD), tris(8-hydroxyquinoline)aluminum (Alq(3)) as the electron-transporting layer, and Al as the cathode. A luminance of 700 cd/m(2) and a luminescent efficiency of 0.8% are achieved at a drive voltage of 36 V. In the experiment, it is found that the introduction of electron-transporting layer PBD has a great effect on the emissive color of the electroluminescent devices prepared by PVK doped with perylene. Yellow-green emission is observed from the device structure of glass substrate/indium-tin-oxide/PVK:perylene/Al. The possible emissive mechanisms are given. The effect of the transporting layer on the electroluminescence is also discussed. (C) 1997 Elsevier Science S.A.
Resumo:
AC thin film electroluminescent devices of MIS and MISIM have been fabricated with a novel dielectric layer of Eu2O3 as an insulator. The threshold voltage for light emission is found to depend strongly on the frequency of excitation source in these devices. These devices are fabricated with an active layer of ZnS:Mn and a novel dielectric layer of Eu2O3 as an insulator. The observed frequency dependence of brightness-voltage characteristics has been explained on the basis of the loss characteristic of the insulator layer. Changes in the threshold voltage and brightness with variation in emitting or insulating film thickness have been investigated in metal-insulator-semiconductor (MIS) structures. It has been found that the decrease in brightness occurring with decreasing ZnS layer thickness can be compensated by an increase in brightness obtained by reducing the insulator thickness. The optimal condition for low threshold voltage and higher stability has been shown to occur when the active layer to insulator thickness ratio lies between one and two.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
Department of Physics, Cochin University of Science and Technology