994 resultados para EINSTEIN-ETHER THEORY
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.
Resumo:
Mode of access: Internet.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.
Resumo:
Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
En 1905, aparecen en la revista "Annalen der physik" tres artículos que revolucionarán las ciencias físicas y pondrán en jaque los asentados conceptos newtonianos de Espacio y Tiempo. La formulación de la Teoría de la Relatividad por Albert Einstein pone en crisis el valor absoluto de estos conceptos, y permite proponer nuevas reflexiones a propósito de su concepción dentro del campo de la física. Esta revolución ¿podría extrapolarse al campo de la arquitectura, donde Espacio y Tiempo tienen un papel protagonista? Hay que entender la complejidad del hecho arquitectónico y las innumerables variables que participan de su definición. Se estudia en esta Tesis Doctoral un aspecto muy concreto: cómo un paradigma (la Teoría de la Relatividad) puede intervenir y modificar, o no, la Arquitectura. Se plantea para ello ir al origen; desentrañar el momento de interacción entre la Teoría de la Relatividad y la Teoría de la Arquitectura, que permita determinar si aquella influyó sobre ésta en los escritos teóricos de las vanguardias aplicados a la Arquitectura. “Después de Einstein. Una arquitectura para una teoría” buscará los puntos de conexión de la Teoría de la Relatividad con la teoría arquitectónica de las vanguardias de principio del siglo XX, su influencia, la contaminación entre una y otra, con posibles resultados arquitectónicos a partir de esta interacción, capaz de definir nuevos argumentos formales para un nuevo lenguaje enArquitectura. Annalen der physik Después de Einstein. Una arquitectura para una teoría Para ello la Tesis se estructura en cuatro capítulos. El primero expone el ámbito geográfico y cronológico donde se desarrolla la Teoría de la Relatividad con la repercusión teórica que tiene para el arte, en función de una nueva definición de espacio vinculado al tiempo, como evento que se desarrolla en un ámbito cuatridimensional; la indeterminación de las medidas de espacio y de las medidas de tiempo, y la importancia de entender la materia como energía. El segundo capítulo estudia los movimientos de vanguardia coetáneos a la eclosión de la Relatividad, enmarcados en su ámbito geográfico más próximo. El cubismo se muestra como movimiento que participa ocasionalmente de las matemáticas y la geometría, bajo el influjo del científico Henri Poincaré y las geometrías no euclidianas. El futurismo indaga en los avances de la ciencia desde una cierta lejanía, cierta falta de rigor o profundidad científica para extraer las leyes de su nuevo idealismo plástico constructivo, definiendo e interpretando su Universo a partir de los avances de la ciencia, en respuesta a la crisis del espacio y del tiempo newtonianos. El lenguaje científico se encuentra presente en conceptos como "simultaneidad" (Boccioni), "expansión esférica de la luz en el espacio" (Severini y Carrá), "cuatridimensionalidad", "espacio-tiempo", "aire-luz-fuerza", "materia y energía" que paralelamente conforman el cuerpo operacional de la teoría de Einstein. Si bien no es posible atribuir a la Teoría de la Relatividad un papel protagonista como referente para el pensamiento artístico, en 1936, con la aparición del manifiesto Dimensionista, se atribuyen explícitamente a las teorías de Einstein las nuevas ideas de espacio-tiempo del espíritu europeo seguido por cubistas y futuristas. El tercer capítulo describe cómo la Teoría de la Relatividad llegó a ser fuente de inspiración para la Teoría de la Arquitectura. Estructurado en tres subcapítulos, se estudia el autor principal que aportó para la Arquitectura conceptos e ideas extrapoladas de la Teoría de la Relatividad después de su estudio e interpretación (Van Doesburg), dónde se produjeron las influencias y puntos de contacto (Lissitzky, Eggeling, Moholy-Nagy) y cómo fueron difundidas a través de la arquitectura (Einsteinturm de Mendelsohn) y de las revistas especializadas. El cuarto capítulo extrae las conclusiones del estudio realizado en esta Tesis, que bien pudiera resumir MoholyNagy en su texto "Vision inmotion" (1946) al comentar: "Ya que el "espacio-tiempo" puede ser un término engañoso, tiene que hacerse especialmente hincapié en que los problemas de espacio-tiempo en el arte no están necesariamente basados en la Teoría de la Relatividad de Einstein. Esto no tiene intención de descartar la relevancia de su teoría para las artes. Pero los artistas y los laicos rara vez tienen el conocimiento matemático para visualizar en fórmulas científicas las analogías con su propio trabajo. La terminología de Einstein del "espacio-tiempo" y la "relatividad" ha sido absorbida por nuestro lenguaje diario." ABSTRACT. "AFTER EINSTEIN:ANARCHITECTUREFORATHEORY." In 1905, three articles were published in the journal "Annalen der Physik ". They revolutionized physical sciences and threw into crisis the newtonian concepts of Space and Time. The formulation of the Theory of Relativity by Albert Einstein put a strain on the absolute value of these concepts, and proposed new reflections about them in the field of Physics. Could this revolution be extrapolated to the field of Architecture, where Space and Time have a main role? It is necessary to understand the complexity of architecture and the countless variables involved in its definition. For this reason, in this PhD. Thesis, we study a specific aspect: how a paradigm (Theory of Relativity) can intervene and modify -or not- Architecture. It is proposed to go back to the origin; to unravel the moment in which the interaction between the Theory of Relativity and the Theory of Architecture takes place, to determine whether the Theory of Relativity influenced on the theoretical avant-garde writings applied to Architecture. "After Einstein.An architecture for a theory " will search the connection points between the Theory of Relativity and architectural avant-garde theory of the early twentieth century, the influence and contamination between them, giving rise to new architectures that define new formal arguments for a new architectural language. Annalen der Physik This thesis is divided into four chapters. The first one describes the geographical and chronological scope in which the Theory of Relativity is developed showing its theoretical implications in the field of art, according to a new definition of Space linked to Time, as an event that takes place in a fourdimensional space; the indetermination of the measurement of space and time, and the importance of understanding "matter" as "energy". The second chapter examines the avant-garde movements contemporary to the theory of relativity. Cubism is shown as an artist movement that occasionally participates in mathematics and geometry, under the influence of Henri Poincaré and non-Euclidean geometries. Futurism explores the advances of science at a certain distance, with lack of scientific rigor to extract the laws of their new plastic constructive idealism. Scientific language is present in concepts like "simultaneity" (Boccioni), "expanding light in space" (Severini and Carra), "four-dimensional space", "space-time", "light-air-force," "matter and energy" similar to the operational concepts of Einstein´s theory. While it is not possible to attribute a leading role to the Theory of Relativity, as a benchmark for artistic laws, in 1936, with the publication of the Dimensionist manifest, the new ideas of space-time followed by cubist and futurist were attributed to the Einstein's theory. The third chapter describes how the Theory of Relativity became an inspiration for the architectural theory. Structured into three subsections, we study the main author who studied the theory of relativity and ,as a consequence, contributed with some concepts and ideas to the theory of architecture (Van Doesburg), where influences and contact points took place (Lissitzky, Eggeling, Moholy-Nagy) and how were disseminated throughArchitecture (Einsteinturm, by Mendelsohn) and journals. The fourth chapter draws the conclusions of this PhD. Thesis, which could be well summarized by Moholy Nagy in his text "Vision in Motion" (1946): vi Since "space-time" can be a misleading term, it especially has to be emphasized that the space-time problems in the arts are not necessarily based upon Einstein´s Theory of Relativity. This is not meant to discount the relevance of his theory to the arts. But artists and laymen seldom have the mathematical knowledge to visualize in scientific formulae the analogies to their own work. Einstein's terminology of "space-time" and "relativity" has been absorbed by our daily language.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
TRAUTMAN has postulated1 that the usual space−time singularity occurring in classical cosmological models and in the gravitational collapse of massive objects could be averted if intrinsic spin effects are incorporated into general relativity by adding torsion terms to the usual Einstein field equations, that is through the Einstein−Cartan theory. Invoking a primordial magnetic field for aligning all the individual nuclear spins he shows that his universe consisting of 1080 aligned neutrons collapses to a minimum radius of the order of 1 cm with a corresponding matter density of 1055 g cm-3.
Resumo:
Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.
Resumo:
Uma forma de generalizar a teoria de Einstein da gravitação é incorporar na lagrangiana termos que dependem de escalares formados com os tensores de Ricci e Riemann, tais como (Ricci)2, ou (Riemann)2. Estas teorias tem sido estudadas intensamente nos últimos anos, já que elas podem ser usadas para descrever a expansão acelerada do universo no modelo cosmológico standard. Entre os desfios de modificar a teoria de Einstein, se encontra o de limitar a ambiguidade na escolha da dependência da lagrangiana com os escalares antes mencionados. A proposta desta dissertação é a de colocar limites sobre as possíveis lagrangianas impondo que as ondas (isto é, perturbações lineares) se propaguem no vácuo sem que apareça, shocks.
Resumo:
When a pulse of light reflects from a mirror that is travelling close to the speed of light, Einstein's theory of relativity predicts that it will be up-shifted to a substantially higher frequency and compressed to a much shorter duration. This scenario is realized by the relativistically oscillating plasma surface generated by an ultraintense laser focused onto a solid target. Until now, it has been unclear whether the conditions necessary to exploit such phenomena can survive such an extreme interaction with increasing laser intensity. Here, we provide the first quantitative evidence to suggest that they can. We show that the occurrence of surface smoothing on the scale of the wavelength of the generated harmonics, and plasma denting of the irradiated surface, enables the production of high-quality X-ray beams focused down to the diffraction limit. These results improve the outlook for generating extreme X-ray fields, which could in principle extend to the Schwinger limit.