22 resultados para EGR1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including activating transcription factor 3 (Atf3), Egr1 and Ptgs2 are rapidly and transiently upregulated by endothelin-1 in cardiomyocytes. Atf3 regulates expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. Of upregulated mRNAs, expression of 23 (including Egr1, Ptgs2) was enhanced and expression of 25 was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on upregulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3-Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from dysregulation of target genes. Our data therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, biomarkers and transcriptional factor motifs were identified in order to investigate the etiology and phenotypic severity of Down syndrome. GSE 1281, GSE 1611, and GSE 5390 were downloaded from the gene expression ominibus (GEO). A robust multiarray analysis (RMA) algorithm was applied to detect differentially expressed genes (DEGs). In order to screen for biological pathways and to interrogate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, the database for annotation, visualization, and integrated discovery (DAVID) was used to carry out a gene ontology (GO) function enrichment for DEGs. Finally, a transcriptional regulatory network was constructed, and a hypergeometric distribution test was applied to select for significantly enriched transcriptional factor motifs. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were each up-regulated two-fold in Down syndrome samples compared to normal samples; of these, SON and TTC3 were newly reported. CBR1, DYRK1A, HMGN1, ITSN1, RCAN1, SON, TMEM50B, and TTC3 were located on human chromosome 21 (mouse chromosome 16). The DEGs were significantly enriched in macromolecular complex subunit organization and focal adhesion pathways. Eleven significantly enriched transcription factor motifs (PAX5, EGR1, XBP1, SREBP1, OLF1, MZF1, NFY, NFKAPPAB, MYCMAX, NFE2, and RP58) were identified. The DEGs and transcription factor motifs identified in our study provide biomarkers for the understanding of Down syndrome pathogenesis and progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les « Facteurs de croissance des fibroblastes» (FGF) agissent comme des régulateurs locaux sur la qualité des follicules et sont connus pour promouvoir la prolifération des cellules de granulosa, réduire l’apoptose et la stéroïdogenèse. Parmi la sous-famille FGF8, FGF18 est une exception puisqu’il semblerait avoir une fonction pro-apoptotique alors que FGF8 n’a pas été jusqu’à présent rapporté comme altérant la viabilité des cellules de la granulosa. Ces deux ligands ont un mode d’activation similaire et il pourrait être proposé que toute la sous-famille FGF8 ait la même réponse. L’objectif de cette étude était de déterminer si FGF8 et FGF18 activaient la même réponse précoce de gènes dans des cultures de granulosa bovine. Pour répondre à cette question, nous avons cultivé des cellules de la granulosa dans du milieu de culture sans sérum pendant 5 jours. Le jour 5, les cellules ont été traitées avec FGF8 ou FGF18. Nous avons eu recours à une approche de « puce à ADN » afin d’identifier la réponse précoce de gènes induite par FGF8 et FGF18, et les données ont été confirmées par des PCRs en temps réel lors d’une expérience in vitro où les cellules de granulosa ont été traitées avec FGF8 et FGF18 pendant différents temps. L’analyse du puce à ADN a identifié 12 gènes surexprimés par FGF8, incluant SPRY2, NR4A1, XIRP1, BAMBI, EGR1, FOS et FOSL1. A l’inverse, FGF18 n’a régulé aucun gène de manière significative. Les analyses de PCR ont confirmé l’augmentation d’ARNm codant pour EGR1, EGR3, FOS, XIRP1, FOSL1, SPRY2, NR4A1 et BAMBI après 2 h de traitement. FGF18 a entrainé seulement une augmentation de l’expression de EGR1 après 2 h de traitement parmi tous les gènes testés. Ces résultats démontrent donc que FGF8 et FGF18, malgré leur similarité dans le mode d’activation de leurs récepteurs, agissent sur les cellules de la granulosa via différentes voies de signalisation. FGF8 et FGF18, sont donc tous les deux capables de stimuler l’expression de EGR1, mais les voies de signalisation induites par la suite divergent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, anticonvulsant effects of the plant cannabinoid, cannabidivarin (CBDV), have been reported in several animal models of seizure. However, these behaviourally observed anticonvulsant effects have not been confirmed at the molecular level. To examine changes to epilepsy-related gene expression following chemical convulsant treatment and their subsequent control by phytocannabinoid administration, we behaviourally evaluated effects of CBDV (400 mg/kg, p.o.) on acute, pentylenetetra- zole (PTZ: 95 mg/kg, i.p.)-induced seizures, quantified expression levels of several epilepsy-related genes (Fos, Casp 3, Ccl3, Ccl4, Npy, Arc, Penk, Camk2a, Bdnf and Egr1) by qPCR using hippocampal, neocortical and prefrontal cortical tissue samples before examining correlations between expression changes and seizure severity. PTZ treatment alone produced generalised seizures (median: 5.00) and significantly increased expression of Fos, Egr1, Arc, Ccl4 and Bdnf. Consistent with previous findings, CBDV significantly decreased PTZ-induced seizure severity (median: 3.25) and increased latency to the first sign of seizure. Furthermore, there were correlations between reductions of seizure severity and mRNA expression of Fos, Egr1, Arc, Ccl4 and Bdnf in the majority of brain regions in the CBDV+PTZ treated group. When CBDV treated animals were grouped into CBDV responders (criterion: seizure severity ≤ 3.25) and non-responders (criterion: seizure severity >3.25), PTZ-induced increases of Fos, Egr1, Arc, Ccl4 and Bdnf expression were suppressed in CBDV re- sponders. These results provide the first molecular confirmation of behaviourally observed effects of the non-psychoactive, anticonvulsant cannabinoid, CBDV, upon chemically-induced seizures and serve to underscore its suitability for clinical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term depression (LTD) is one of the paradigms used in vivo or ex vivo for studying memory formation. In order to identify genes with potential relevance for memory formation we used mouse organotypic hippocampal slice cultures in which chemical LTD was induced by applications of 3,5-dihydroxyphenylglycine (DHPG). The induction of chemical LTD was robust, as monitored electrophysiologically. Gene expression analysis after chemical LTD induction was performed using cDNA microarrays containing >7,000 probes. The DHPG-induced expression of immediate early genes (c-fos, junB, egr1 and nr4a1) was subsequently verified by TaqMan polymerase chain reaction. Bioinformatic analysis suggested a common regulator element [serum response factor (SRF)/Elk-1 binding sites] within the promoter region of these genes. Indeed, here we could show a DHPG-dependent binding of SRF at the SRF response element (SRE) site within the promoter region of c-fos and junB. However, SRF binding to egr1 promoter sites was constitutive. The phosphorylation of the ternary complex factor Elk-1 and its localization in the nucleus of hippocampal neurones after DHPG treatment was shown by immunofluorescence using a phosphospecific antibody. We suggest that LTD leads to SRF/Elk-1-regulated gene expression of immediate early transcription factors, which could in turn promote a second broader wave of gene expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The locomotion is one of the most important capabilities developed by the animals, whose improvement is dependent on several neural centers, including the spinal cord. This activity promotes a lot of spinal modifications that enable it to adapt and improve their connections. This study aimed to observe the morphological changes occurring in the spinal cord after locomotor training in intact rats. For that we used male Wistar rats, which were submitted to locomotor training in wheel activity in protocols 1, 3 and 7 days (30min/day), and the results were compared to a control group not subjected to exercise. Coronal sections of 40 μm of the lumbosacral spinal cord were subjected to immunohistochemical techniques anti-Egr1, anti-NMDA and anti-SP, to characterize the spinal plasticity related to these substances. Egr1-immunoreactive cells were increased in all laminas, essentially in those more intensely activated by locomotion, laminas IV-X levels L4-S3. All observed sections expressed NMDA-immunoreactivity. Analysis of SP in the spinal dorsal horn resulted no significant variations of this neuropeptide related to locomotion. The results suggest that locomotor training provides synaptic plasticity similar to LTP in all laminas of the lumbosacral spinal cord, in different intensities. However, the SP appears do not participate of this process in the spinal dorsal horn. This work will contribute for consolidating and characterization of synaptic plasticity in the spinal cord

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep is beneficial to learning, but the underlying mechanisms remain controversial. The synaptic homeostasis hypothesis (SHY) proposes that the cognitive function of sleep is related to a generalized rescaling of synaptic weights to intermediate levels, due to a passive downregulation of plasticity mechanisms. A competing hypothesis proposes that the active upscaling and downscaling of synaptic weights during sleep embosses memories in circuits respectively activated or deactivated during prior waking experience, leading to memory changes beyond rescaling. Both theories have empirical support but the experimental designs underlying the conflicting studies are not congruent, therefore a consensus is yet to be reached. To advance this issue, we used real-time PCR and electrophysiological recordings to assess gene expression related to synaptic plasticity in the hippocampus and primary somatosensory cortex of rats exposed to novel objects, then kept awake (WK) for 60 min and finally killed after a 30 min period rich in WK, slow-wave sleep (SWS) or rapid-eye-movement sleep (REM). Animals similarly treated but not exposed to novel objects were used as controls. We found that the mRNA levels of Arc, Egr1, Fos, Ppp2ca and Ppp2r2d were significantly increased in the hippocampus of exposed animals allowed to enter REM, in comparison with control animals. Experience-dependent changes during sleep were not significant in the hippocampus for Bdnf, Camk4, Creb1, and Nr4a1, and no differences were detected between exposed and control SWS groups for any of the genes tested. No significant changes in gene expression were detected in the primary somatosensory cortex during sleep, in contrast with previous studies using longer post-stimulation intervals (>180 min). The experience-dependent induction of multiple plasticity-related genes in the hippocampus during early REM adds experimental support to the synaptic embossing theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural luteolysis involves multiple pulses of prostaglandin F2alpha (PGF) released by the nonpregnant uterus. This study investigated expression of 18 genes from five distinct pathways, following multiple low-dose pulses of PGF. Cows on Day 9 of the estrous cycle received four intrauterine infusions of 0.25 ml of phosphate-buffered saline (PBS) or PGF (0.5 mg of PGF in 0.25 ml of PBS) at 6-h intervals. A luteal biopsy sample was collected 30 min after each PBS or PGF infusion. There were four treatment groups: Control (n = 5; 4 PBS infusions), 4XPGF (4 PGF infusions; n = 5), 2XPGF-non-regressed (2 PGF infusions; n = 5; PGF-PBS-PGF-PBS; no regression after treatments), and 2XPGF-regressed (PGF-PBS-PGF-PBS; regression after treatments; n = 5). As expected, the first PGF pulse increased mRNA for the immediate early genes JUN, FOS, NR4A1, and EGR1 but unexpectedly also increased mRNA for steroidogenic (STAR) and angiogenic (VEGFA) pathways. The second PGF pulse induced immediate early genes and genes related to immune system activation (IL1B, FAS, FASLG, IL8). However, mRNA for VEGFA and STAR were decreased by the second PGF infusion. After the third and fourth PGF pulses, a distinctly luteolytic pattern of gene expression was evident, with inhibition of steroidogenic and angiogenic pathways, whereas, there was induction of pathways for immune system activation and production of PGF. The pattern of PGF-induced gene expression was similar in corpus luteum not destined for luteolysis (2X-non-regressed) after the first PGF pulse but was very distinct after the second PGF pulse. Thus, although the initial PGF pulse induced mRNA for many pathways, the second and later pulses of PGF appear to have set the distinct pattern of gene expression that result in luteolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis. © 2013 Marjan Nokhbehsaim et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Herzinsuffizienz (HI) ist eine der häufigsten und teuersten medizinischen Indikationen in der heutigen Zeit. rnIn der vorliegenden Arbeit konnte zum ersten Mal die Topoisomerase 2b (Top2b) in Zusammenhang mit der Entstehung einer dilatativen Kardiomyopathie gebracht werden. rnIn einem speziellen Mausmodell war es möglich, die Top2b gewebsspezifisch und zeitspezifisch nur in Kardiomyozyten zu deletieren. Dies geschah mittels eines Tamoxifen-induzierten Cre-Rekombinase-Gendeletionsmodells. Phänotypisch zeigten die Top2b-deletierten Mäuse 8 Wochen nach der Tamoxifen-Gabe signifikant reduzierte kardiale Ejektionsfraktionen sowie erhöhte linksventrikuläre enddiastolische und endsystolische Volumina. Weder Schlagvolumen noch Körpergewicht waren verändert. Die natriuretischen Peptide ANP und BNP waren in den Top2b-deletierten Tieren ebenfalls signifikant erhöht. Zusätzlich zeigten sowohl elektronenmikroskopische Untersuchungen als auch klassische histologische Verfahren fibrotische Veränderungen und erhöhte Kollagenablagerungen in Top2b-deletierten Tieren. Begleitend dazu stiegen die mRNA-Expressionslevel von Col1a1, Col3a1, Tgfβ1 und Tgfβ2 in den deletierten Tieren 8 Wochen nach der Implementierung der Deletion signifikant an. rnIn einer genomweiten Hochdurchsatz-Sequenzierung waren bereits 2 Wochen nach Tamoxifen-Gabe 128 Gene mindestens 2-fach gegenüber der Kontrollgruppe differentiell exprimiert. Eine genauere Analyse der veränderten Genexpression ließ bereits 14 Tage nach Implementierung der Deletion kardiale Verschlechterungen vermuten. So waren neben dem atrialen natriuretischen Peptid ANP die beiden häufigsten Kollagenarten im Herzen, Col3a1 und Col1a1, hochreguliert. rnInteressanterweise beinhalteten die 37 herunterregulierten Gene 11 Transkriptionsfaktoren. Da der Top2b in den letzten Jahren eine immer stärker werdende Bedeutung in der Transkription zugesprochen wird, sollte mittels Chromatin-Immunpräzipitation ein direkter Zusammenhang zwischen der Top2b-Deletion und der Herunterregulierung der 11 Transkriptionsfaktoren sowie die Bindung der Top2b an Promotoren ausgewählter, differentiell-exprimierter Gene untersucht werden. Generell konnte keine vermehrte Bindung von Top2b an Promotorbereiche gezeigt werden, was aber nicht dem generellen Fehlen einer Bindung gleichkommen muss. Vielmehr gab es methodische Schwierigkeiten, weshalb die Bedeutung der Top2b in der Transkription im Rahmen der vorliegenden Arbeit nicht ausreichend geklärt werden konnte.rnEine Kardiomyozyten-spezifische Top2b-Deletion mündete 8 Wochen nach Tamoxifen-Gabe in eine dilatative Kardiomyopathie. Zum gegenwärtigen Zeitpunkt sind keine klaren Aussagen zum zugrundeliegenden Mechanismus der entstehenden Herzschädigung in Folge einer Top2b-Deletion zu treffen. Es gibt jedoch Hinweise darauf, dass der Tumorsuppressormarker p53 eine wichtige Rolle in der Entstehung der dilatativen Kardiomyopathie spielen könnte. So konnte 8 Wochen nach der Top2b-Deletion mittels Chromatin-Immunpräzipitation eine erhöhte Bindung von p53 an Promotorregionen von Col1a1, Tgfβ2 und Mmp2 detektiert werden. Die Bedeutung dieser Bindung, und ob aufgrund dessen die Entstehung der Fibrose erklärt werden könnte, ist zum jetzigen Zeitpunkt unklar.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1 β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.