918 resultados para EEG signals
Resumo:
One of the most important applications of adaptive systems is in noise cancellation using adaptive filters. Ln this paper, we propose adaptive noise cancellation schemes for the enhancement of EEG signals in the presence of EOG artifacts. The effect of two reference inputs is studied on simulated as well as recorded EEG signals and it is found that one reference input is enough to get sufficient minimization of EOG artifacts. This has been verified through correlation analysis also. We use signal to noise ratio and linear prediction spectra, along with time plots, for comparing the performance of the proposed schemes for minimizing EOG artifacts from contaminated EEG signals. Results show that the proposed schemes are very effective (especially the one which employs Newton's method) in minimizing the EOG artifacts from contaminated EEG signals.
Resumo:
The EEG time series has been subjected to various formalisms of analysis to extract meaningful information regarding the underlying neural events. In this paper the linear prediction (LP) method has been used for analysis and presentation of spectral array data for the better visualisation of background EEG activity. It has also been used for signal generation, efficient data storage and transmission of EEG. The LP method is compared with the standard Fourier method of compressed spectral array (CSA) of the multichannel EEG data. The autocorrelation autoregressive (AR) technique is used for obtaining the LP coefficients with a model order of 15. While the Fourier method reduces the data only by half, the LP method just requires the storage of signal variance and LP coefficients. The signal generated using white Gaussian noise as the input to the LP filter has a high correlation coefficient of 0.97 with that of original signal, thus making LP as a useful tool for storage and transmission of EEG. The biological significance of Fourier method and the LP method in respect to the microstructure of neuronal events in the generation of EEG is discussed.
Resumo:
One of the main disturbances in EEG signals is EMG artefacts generated by muscle movements. In the paper, the use of a linear phase FIR digital low-pass filter with finite wordlength precision coefficients is proposed, designed using the compensation procedure, to minimise EMG artefacts in contaminated EEG signals. To make the filtering more effective, different structures are used, i.e. cascading, twicing and sharpening (apart from simple low-pass filtering) of the designed FIR filter Modifications are proposed to twicing and sharpening structures to regain the linear phase characteristics that are lost in conventional twicing and sharpening operations. The efficacy of all these transformed filters in minimising EMG artefacts is studied, using SNR improvements as a performance measure for simulated signals. Time plots of the signals are also compared. Studies show that the modified sharpening structure is superior in performance to all other proposed methods. These algorithms have also been applied to real or recorded EMG-contaminated EEG signal. Comparison of time plots, and also the output SNR, show that the proposed modified sharpened structure works better in minimising EMG artefacts compared with other methods considered.
Resumo:
Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with processing the EEG signals obtained from 16 spatially arranged electrodes to measure coupling or synchrony between the frontal, parietal, occipital and temporal lobes of the cerebrum under the eyes open and eyes closed conditions. This synchrony was measured using magnitude squared coherence, Short Time Fourier Transform and wavelet based coherences. We found a pattern in the time-frequency coherence as we moved from the nasion to the inion of the subject's head. The coherence pattern obtained from the wavelet approach was found to be far more capable of picking up peaks in coherence with respect to frequency when compared to the regular Fourier based coherence. We detected high synchrony between frontal polar electrodes that is missing in coherence plots between other electrode pairs. The study has potential applications in healthcare.
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
Background: l’epilessia è una malattia cerebrale che colpisce oggigiorno circa l’1% della popolazione mondiale e causa, a chi ne soffre, convulsioni ricorrenti e improvvise che danneggiano la vita quotidiana del paziente. Le convulsioni sono degli eventi che bloccano istantaneamente la normale attività cerebrale; inoltre differiscono tra i pazienti e, perciò, non esiste un trattamento comune generalizzato. Solitamente, medici neurologi somministrano farmaci, e, in rari casi, l’epilessia è trattata con operazioni neurochirurgiche. Tuttavia, le operazioni hanno effetti positivi nel ridurre le crisi, ma raramente riescono a eliminarle del tutto. Negli ultimi anni, nel campo della ricerca scientifica è stato provato che il segnale EEG contiene informazioni utili per diagnosticare l'arrivo di un attacco epilettico. Inoltre, diversi algoritmi automatici sono stati sviluppati per rilevare automaticamente le crisi epilettiche. Scopo: lo scopo finale di questa ricerca è l'applicabilità e l'affidabilità di un dispositivo automatico portatile in grado di rilevare le convulsioni e utilizzabile come sistema di monitoraggio. L’analisi condotta in questo progetto, è eseguita con tecniche di misure classiche e avanzate, in modo tale da provare tecnicamente l’affidabilità di un tale sistema. La comparazione è stata eseguita sui segnali elettroencefalografici utilizzando due diversi sistemi di acquisizione EEG: il metodo standard utilizzato nelle cliniche e il nuovo dispositivo portatile. Metodi: è necessaria una solida validazione dei segnali EEG registrati con il nuovo dispositivo. I segnali saranno trattati con tecniche classiche e avanzate. Dopo le operazioni di pulizia e allineamento, verrà utilizzato un nuovo metodo di rappresentazione e confronto di segnali : Bump model. In questa tesi il metodo citato verrà ampiamente descritto, testato, validato e adattato alle esigenze del progetto. Questo modello è definito come un approccio economico per la mappatura spazio-frequenziale di wavelet; in particolare, saranno presenti solo gli eventi con un’alta quantità di energia. Risultati: il modello Bump è stato implementato come toolbox su MATLAB dallo sviluppatore F. Vialatte, e migliorato dall’Autore per l’utilizzo di registrazioni EEG da sistemi diversi. Il metodo è validato con segnali artificiali al fine di garantire l’affidabilità, inoltre, è utilizzato su segnali EEG processati e allineati, che contengono eventi epilettici. Questo serve per rilevare la somiglianza dei due sistemi di acquisizione. Conclusioni: i risultati visivi garantiscono la somiglianza tra i due sistemi, questa differenza la si può notare specialmente comparando i grafici di attività background EEG e quelli di artefatti o eventi epilettici. Bump model è uno strumento affidabile per questa applicazione, e potrebbe essere utilizzato anche per lavori futuri (ad esempio utilizzare il metodo di Sincronicità Eventi Stocas- tici SES) o differenti applicazioni, così come le informazioni estratte dai Bump model potrebbero servire come input per misure di sincronicità, dalle quali estrarre utili risultati.
Resumo:
Electroencephalograms (EEG) are often contaminated with high amplitude artifacts limiting the usability of data. Methods that reduce these artifacts are often restricted to certain types of artifacts, require manual interaction or large training data sets. Within this paper we introduce a novel method, which is able to eliminate many different types of artifacts without manual intervention. The algorithm first decomposes the signal into different sub-band signals in order to isolate different types of artifacts into specific frequency bands. After signal decomposition with principal component analysis (PCA) an adaptive threshold is applied to eliminate components with high variance corresponding to the dominant artifact activity. Our results show that the algorithm is able to significantly reduce artifacts while preserving the EEG activity. Parameters for the algorithm do not have to be identified for every patient individually making the method a good candidate for preprocessing in automatic seizure detection and prediction algorithms.
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.