13 resultados para EDLC


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current methods for molecular simulations of Electric Double Layer Capacitors (EDLC) have both the electrodes and the electrolyte region in a single simulation box. This necessitates simulation of the electrode-electrolyte region interface. Typical capacitors have macroscopic dimensions where the fraction of the molecules at the electrode-electrolyte region interface is very low. Hence, large systems sizes are needed to minimize the electrode-electrolyte region interfacial effects. To overcome these problems, a new technique based on the Gibbs Ensemble is proposed for simulation of an EDLC. In the proposed technique, each electrode is simulated in a separate simulation box. Application of periodic boundary conditions eliminates the interfacial effects. This in addition to the use of constant voltage ensemble allows for a more convenient comparison of simulation results with experimental measurements on typical EDLCs. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important components in electrochemical storage devices (batteries and supercapacitors) is undoubtedly the electrolyte. The basic function of any electrolyte in these systems is the transport of ions between the positive and negative electrodes. In addition, electrochemical reactions occurring at each electrode/electrolyte interface are the origin of the current generated by storage devices. In other words, performances (capacity, power, efficiency and energy) of electrochemical storage devices are strongly related to the electrolyte properties, as well as, to the affinity for the electrolyte to selected electrode materials. Indeed, the formulation of electrolyte presenting good properties, such as high ionic conductivity and low viscosity, is then required to enhance the charge transfer reaction at electrode/electrolyte interface (e.g. charge accumulation in the case of Electrochemical Double Layer Capacitor, EDLC). For practical and safety considerations, the formulation of novel electrolytes presenting a low vapor pressure, a large liquid range temperature, a good thermal and chemical stabilities is also required.

This lecture will be focused on the effect of the electrolyte formulation on the performances of electrochemical storage devices (Li-ion batteries and supercapacitors). During which, a summary of the physical, thermal and electrochemical data obtained by our group, recently, on the formulation of novel electrolyte-based on the mixture of an ionic liquid (such as EmimNTf2 and Pyr14NTf2) and carbonate or dinitrile solvents will be presented and commented. The impact of the electrolyte formulation on the storage performances of EDLC and Li-ion batteries will be also discussed to further understand the relationship between electrolyte formulation and electrochemical performances. This talk will also be an opportunity to further discuss around the effects of additives (SEI builder: fluoroethylene carbonate and vinylene carbonate), ionic liquids, structure and nature of lithium salt (LiTFSI vs LiPF6) on the cyclability of negative electrode to then enhance the electrolyte formulation. For that, our recent results on TiSnSb and graphite negative electrodes will be presented and discussed, for example 1,2.

1-C. Marino, A. Darwiche1, N. Dupré, H.A. Wilhelm, B. Lestriez, H. Martinez, R. Dedryvère, W. Zhang, F. Ghamouss, D. Lemordant, L. Monconduit “ Study of the Electrode/Electrolyte Interface on Cycling of a Conversion Type Electrode Material in Li Batteries” J. Phys.chem. C, 2013, 117, 19302-19313

2- Mouad Dahbi, Fouad Ghamouss, Mérièm Anouti, Daniel Lemordant, François Tran-Van “Electrochemical lithiation and compatibility of graphite anode using glutaronitrile/dimethyl carbonate mixtures containing LiTFSI as electrolyte” 2013, 43, 4, 375-385.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead-carbon hybrid ultracapacitors comprise positive lead dioxide plates of the lead-acid battery and negative plates of carbon-based electrical double-layer capacitors (EDLCs). Accordingly, a lead-carbon hybrid ultracapacitor has the features of both the battery and that of an EDLC. In this study, the development and performance comparison between the two types of lead-carbon hybrid ultracapacitors, namely those with substrate-integrated and conventional pasted positive plates, is presented as such a study is lacking in the literature. The study suggests that the faradaic efficiencies for both types of lead-carbon hybrid ultracapacitors are comparable. However, their capacitance values as well as energy and power densities differ significantly. For substrate-integrated positive plate hybrid ultracapacitor, capacitance and energy density values are lower, but power density values are higher than pasted positive plate lead-carbon hybrid ultracapacitors due to their shorter response time. Accordingly, internal resistance values are also lower for substrate-integrated lead-carbon hybrid ultracapacitors. Both types of lead-carbon hybrid ultracapacitors exhibit good cycle life of 100,000 pulse charge-discharge cycles with only a nominal loss in their capacitance values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work provides a first-time-study of Azepanium-based ionic liquids (ILs) as electrolyte components for electrochemical double layer capacitors (EDLCs). Herein, two Azepanium-based ILs, namely N-methyl, N-butyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(14)TFSI) and N-methyl, N-hexyl-azepanium bis(trifluoromethanesulfonyl)imide (Azp(16)TFSI) were compared with the established IL N-butyl, N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr(14)TFSI) in terms of viscosity, conductivity, thermal stability and electrochemical behavior in EDLC systems. The ILs' operative potentials were found to be comparable, leading to operative voltages up to 3.5 V without significant electrolyte degradation. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work provides a study of mixtures of the azepanium-based ionic liquid (IL) N-methyl, N-butyl-azepanium bis[(trifluoromethane) sulfonyl]imide (Azp14TFSI) and propylene carbonate (PC) as electrolyte components in electrochemical double layer capacitors (EDLCs). The considered mixtures' properties were then compared to the properties of mixtures of N-butyl, N-methylpyrrolidinium bis[(trifluoromethane) sulfonyl]imide (Pyr14TFSI) and PC in terms of viscosity, conductivity and electrochemical behavior. The mixtures' operative potentials were found to be comparable to each other, leading to operative voltages as high as 3.5 V, while retaining the low viscosities and high conductivities of PC based EDLC electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monoliths studied in this work show large specific surface areas (up to 1600 m2 g-1), high densities (up to 1.17 g cm-3) and high electrical conductivities (up to 9.5 S cm-1). They are microporous carbons with pore sizes up to 1.3 nm but most of them below 0.75 nm. They also show oxygen functionalities. The electrochemical behavior of the monoliths is studied in three-electrode cells with aqueous H2SO4 solution as electrolyte. This work deals with the contribution of the sulfate ions and protons to the specific capacitance of carbon monoliths having different surface areas and different contents of oxygen groups. Protons contribute with a pseudocapacitance (up to 152 F g-1) in addition to the double layer capacitance. Sulfate ions contribute with a double layer capacitance only. At the double layer, the capacitance of the sulfate ions (up to 291 F g-1) is slightly higher than that of protons (up to 251 F g-1); both capacitances increase as the surface area increases. The preference of protons to be electroadsorbed at the double layer and the broader voltage window of these ions account for their higher contribution (70 %) to the double layer capacitance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.