968 resultados para ECOLOGICAL-SYSTEMS
Resumo:
Tesis (Doctorado en Filosofía con Orientación en Trabajo Social y Políticas Comparadas de Bienestar Social) U.A.N.L. Facultad de Filosofía Letras y Escuela de Graduados de la Universidad de Arlington, Texas, 2008
Resumo:
Acquiring a mechanistic understanding of the role of the biotic feedbacks on the links between atmospheric CO2 concentrations and temperature is essential for trustworthy climate predictions. Currently, computer based simulations are the only available tool to estimate the global impact of the biotic feedbacks on future atmospheric CO2 and temperatures. Here we propose an alternative and complementary approaches by using materially closed and energetically open analogue/physical models of the carbon cycle. We argue that there is potential in using a materially closed approach to improve our understanding of the magnitude and sign of many biotic feedbacks, and that recent technological advance make this feasible. We also suggest how such systems could be designed and discuss the advantages and limitations of establishing physical models of the global carbon cycle.
Resumo:
Environmental change research often relies on simplistic, static models of human behaviour in social-ecological systems. This limits understanding of how social-ecological change occurs. Integrative, process-based behavioural models, which include feedbacks between action, and social and ecological system structures and dynamics, can inform dynamic policy assessment in which decision making is internalised in the model. These models focus on dynamics rather than states. They stimulate new questions and foster interdisciplinarity between and within the natural and social sciences.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging due to reinforcing feedbacks between multiple drivers. We conducted semi-structured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision-making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. All scenarios showed increased wildfire risk in the event of more droughts. The ‘Hands-off’ scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production. The ‘Fire management’ scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared to the ‘Fire suppression’ scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a ‘boundary object’ to facilitate collaboration and integration of different forms of knowledge and perceptions of fire in the region. This approach has also the potential to support decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
In the past decade, compositional modelling (CM) has established itself as the predominant knowledge-based approach to construct mathematical (simulation) models automatically. Although it is mainly applied to physical systems, there is a growing interest in applying CM to other domains, such as ecological and socio-economic systems. Inspired by this observation, this paper presents a method for extending the conventional CM techniques to suit systems that are fundamentally presented by interacting populations of individuals instead of physical components or processes. The work supports building model repositories for such systems, especially in addressing the most critical outstanding issues of granularity and disaggregation in ecological systems modelling.
Resumo:
Agricultural and forest productive diversification depends on multiple socioeconomic drivers—like knowledge, migration, productive capacity, and market—that shape productive strategies and influence their ecological impacts. Our comparison of indigenous and settlers allows a better understanding of how societies develop different diversification strategies in similar ecological contexts and how the related socioeconomic aspects of diversification are associated with land cover change. Our results suggest that although indigenous people cause less deforestation and diversify more, diversification is not a direct driver of deforestation reduction. A multidimensional approach linking sociocognitive, economic, and ecological patterns of diversification helps explain this contradiction.
Resumo:
The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?
Resumo:
The sustainability of regional development can be usefully explored through several different lenses. In situations in which uncertainties and change are key features of the ecological landscape and social organization, critical factors for sustainability are resilience, the capacity to cope and adapt, and the conservation of sources of innovation and renewal. However, interventions in social-ecological systems with the aim of altering resilience immediately confront issues of governance. Who decides what should be made resilient to what? For whom is resilience to be managed, and for what purpose? In this paper we draw on the insights from a diverse set of case studies from around the world in which members of the Resilience Alliance have observed or engaged with sustainability problems at regional scales. Our central question is: How do certain attributes of governance function in society to enhance the capacity to manage resilience? Three specific propositions were explored: ( 1) participation builds trust, and deliberation leads to the shared understanding needed to mobilize and self-organize; ( 2) polycentric and multilayered institutions improve the fit between knowledge, action, and social-ecological contexts in ways that allow societies to respond more adaptively at appropriate levels; and ( 3) accountable authorities that also pursue just distributions of benefits and involuntary risks enhance the adaptive capacity of vulnerable groups and society as a whole. Some support was found for parts of all three propositions. In exploring the sustainability of regional social-ecological systems, we are usually faced with a set of ecosystem goods and services that interact with a collection of users with different technologies, interests, and levels of power. In this situation in our roles as analysts, facilitators, change agents, or stakeholders, we not only need to ask: The resilience of what, to what? We must also ask: For whom?
Resumo:
This paper considers ocean fisheries as complex adaptive systems and addresses the question of how human institutions might be best matched to their structure and function. Ocean ecosystems operate at multiple scales, but the management of fisheries tends to be aimed at a single species considered at a single broad scale. The paper argues that this mismatch of ecological and management scale makes it difficult to address the fine-scale aspects of ocean ecosystems, and leads to fishing rights and strategies that tend to erode the underlying structure of populations and the system itself. A successful transition to ecosystem-based management will require institutions better able to economize on the acquisition of feedback about the impact of human activities. This is likely to be achieved by multiscale institutions whose organization mirrors the spatial organization of the ecosystem and whose communications occur through a polycentric network. Better feedback will allow the exploration of fine-scale science and the employment of fine-scale fishing restraints, better adapted to the behavior of fish and habitat. The scale and scope of individual fishing rights also needs to be congruent with the spatial structure of the ecosystem. Place-based rights can be expected to create a longer private planning horizon as well as stronger incentives for the private and public acquisition of system relevant knowledge.
Resumo:
Mode of access: Internet.
Resumo:
At head of title: International Biological Program, United States National Committee, Aerobiology Program.
Resumo:
As the world’s natural resources dwindle and critical levels of environmental pollution are approached, sustainability becomes a key issue for governments, organisations and individuals. With the consequences of such an issue in mind, this paper introduces a unifying approach to measure the sustainability performance of socio-economic systems based on the interplay between two key variables: essentiality of consumption and environmental impact. This measure attributes to every system a ‘fitness’ value i.e. a quantity that reflects its ability to remain resilient/healthy by avoiding ecological, social and economic collapse as it consumes the available resources. This new measure is tested on a system where there is a limited supply of resources and four basic consumption types. The analysis has theoretical implications as well as practical importance as it can help countries, organisations or even individuals, in finding better ways to measure sustainability performance.
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.