987 resultados para ECMWF ERA-40
Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data
Resumo:
传统海洋测量方法例如岸基观测站、船只和浮标等方式只能对海面进行单点观测,存在很多不足之处:观测点少,只能获得有限的点的资料,无法得到大范围的海面信息;费用较高,无法大范围的密集观测;传统方法受天气影响较大,无法长时间的连续观测;星载合成孔径雷达能全天候、全天时、高分辨率对海面成像,能实现多波段、多极化、多视角得观测海面,提供大范围、高精度的实时动态海面信息。同时,这种全天候、全天时和高分辨率观测海洋的优势是可见光和红外传感器所没有的。总之研究如何从SAR影像中有效地获取海面信息具有重要的科学和实用意义。 自从1978年Seasat卫星发射以来SAR图像就广泛的应用于海洋要素的反演如海面风场、波高、平均周期。其中对海面风场的反演研究的最多,一般的方法是首先对SAR图像进行快速傅立叶变换得到SAR图像谱,通过图像谱的峰值信息能够得到具有180°模糊的风向,利用SAR图像的条纹或者浮标等外部信息来消除180°模糊确定风向,其次把风向和图像的正交后向散射截面数值(NRCS)带入经验函数CMOD4通过迭代计算得到风速。这种方法得到的海面风场需要外部信息的辅助,不利于大范围的业务化的反演海面风场。因此本文试图直接通过SAR图像来反演海面风场而不利用其他外部信息的帮助。2002年3月1日发射的ENVISAT卫星所获得的ASAR图像具有不同于ERS系列的SAR图像的新特点:不同入射角的情况下获得ASAR图片、双极化数据以及可以获得更宽的带幅的图像。双极化数据可以同时地提供同极化和交错极化的影像,两种极化的数据能够增加分辨目标的能力和提供目标更多的信息,这方面的优势也使得利用双极化的数据来消除SAR图像反演风场中的180º模糊问题提供了可能。本文推导了利用双极化的ASAR图像反演海面风场的新函数,该函数是在同极化和交错极化函数的基础上推导出来的,有效的消除了只用一副ASAR图片反演风场所固有的180º模糊现象。风速和风向的反演结果与Quikscat数据之间的均方根误差分别为0.53 m/s和2.21º。该方法与传统方法的比较可以看出新方法与浮标数据以及Quikscat数据符合的更好。 利用SAR图像来反演海浪的波高也是一个研究的比较多的领域。比较传统的方法是由SAR图像得到的海浪谱计算出波高,目前国际上比较流行的SAR图像反演海浪谱的模式有两种:一种是Hasselmann(1991)提出的在Max-Planck Institute(MPI)发展起来的方法,Hasselmann(1996)进行了改进和完善。另一种是Mastenbroek和de Valk(2000)提出的半参数化反演方法。这两种方法的最主要的缺点就是需要引进外部信息(WAM模式结果或者散射计的风的信息)来消除图像所固有的180°方向模糊问题。而本文应用的经验函数方法(CWAVE)不需要引进任何外部信息而直接得到海浪的重要参数-有效波高(Hs),输入该经验函数的参数主要有:波模式图像的雷达截面、图像方差以及由SAR谱得到的20个参数。这些参数的选择是通过逐步回归方法进行筛选的。CWAVE经验函数的系数是通过6000幅全球分布的ERS-2波模式的图像谱拟合同时同地点的WAM模式结果得到的。利用CWAVE经验函数反演了1998年9月到2000年11月两年多的全球接近一百万的ERS-2 SAR图像的有效波高,利用NOAA浮标数据对反演结果进行了验证,他们之间的相关系数为0.83, 均方根误差为0.61m,偏差为0.02 m;反演结果也与欧洲中长期预报中心(ECMWF)的ERA-40有效波高资料和高度计资料进行了比较,结果表明该方法是通过SAR图像反演Hs的一种有效方法。 SAR的反演结果也应用于有效波高的非线性统计分布的研究。结合动力学和随机统计学原理推导了海面高度、波高和有效波高的非线性统计分布,同时利用了NOAA浮标数据、华师大的波高数据以及SAR的有效波高数据分别对推导出的非线性统计分布函数进行了检验。 SAR的结果也用来反演新的风浪成长关系: ,与已有的风浪成长关系的比较表明该成长关系与已有的结果比较一致。
Resumo:
The stratospheric warming events are categorized into major and minor warming depending on the temperature increase in the polar stratosphere. The warming is called a ‘major’, when the polar temperature increases poleward from 60 degree latitude and followed by a reversal in the zonal wind at 10 hPa (~32 Km). Usually major warming events are associated with the displacement of polar vortex from high to mid latitudes or the splitting of vortices in to two. The warming is called a "Minor", when the polar temperature increases more than 25 degree in a period of a week or less, at any stratospheric level with less intensified easterly wind anomalies. The stratospheric warmings generated during the transition period of winter to spring are called final warmings. The warming events observed in the early winter period (November to early December) over Canadian region are called Canadian warmings. There is strong interaction between stratosphere and troposphere during SSW period over high and low latitudes regions. The thesis consists of 7 chapters
A new look at stratospheric sudden warmings. Part III. Polar vortex evolution and vertical structure
Resumo:
The evolution of the Arctic polar vortex during observed major mid-winter stratospheric sudden warmings (SSWs) is investigated for the period 1957-2002, using European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-40 Ertel’s potential vorticity (PV) and temperature fields. Time-lag composites of vertically weighted PV, calculated relative to the SSW onset time, are derived for both vortex displacement SSWs and vortex splitting SSWs, by averaging over the 15 recorded displacement and 13 splitting events. The evolving vertical structure of the polar vortex during a typical SSW of each type is clearly illustrated by plotting an isosurface of the composite PV field, and is shown to be very close to that observed during representative individual events. Results are verified by comparison with an elliptical diagnostic vortex moment technique. For both types of SSW, little variation is found between individual events in the orientation of the developing vortex relative to the underlying topography, i.e. the location of the vortex during SSWs of each type is largely fixed in relation to the Earth’s surface. During each type of SSW, the vortex is found to have a distinctive vertical structure. Vortex splitting events are typically barotropic, with the vortex split occurring near-simultaneously over a large altitude range (20-40 km). In the majority of cases, of the two daughter vortices formed, it is the ‘Siberian’ vortex that dominates over its ‘Canadian’ counterpart. In contrast, displacement events are characterized by a very clear baroclinic structure; the vortex tilts significantly westward with height, so that the top and bottom of the vortex are separated by nearly 180◦ longitude before the upper vortex is sheared away and destroyed.
Resumo:
Generally, ocean waves are thought to act as a drag on the surface wind so that momentum is transferred downwards, from the atmosphere into the waves. Recent observations have suggested that when long wavelength waves, characteristic of remotely generated swell, propagate faster than the surface wind momentum can also be transferred upwards. This upward momentum transfer acts to accelerate the near-surface wind, resulting in a low-level wave-driven wind jet. Previous studies have suggested that the sign reversal of the momentum flux is well predicted by the inverse wave age, the ratio of the surface wind speed to the speed of the waves at the peak of the spectrum. ECMWF ERA-40 data has been used here to calculate the global distribution of the inverse wave age to determine whether there are regions of the ocean that are usually in the wind-driven wave regime and others that are generally in the wave-driven wind regime. The wind-driven wave regime is found to occur most often in the mid-latitude storm tracks where wind speeds are generally high. The wave-driven wind regime is found to be prevalent in the tropics where wind speeds are generally light and swell can propagate from storms at higher latitudes. The inverse wave age is also a useful indicator of the degree of coupling between the local wind and wave fields. The climatologies presented emphasise the non-equilibrium that exists between the local wind and wave fields and highlight the importance of swell in the global oceans.
Resumo:
The mean state, variability and extreme variability of the stratospheric polar vortices, with an emphasis on the Northern Hemisphere vortex, are examined using 2-dimensional moment analysis and Extreme Value Theory (EVT). The use of moments as an analysis to ol gives rise to information about the vortex area, centroid latitude, aspect ratio and kurtosis. The application of EVT to these moment derived quantaties allows the extreme variability of the vortex to be assessed. The data used for this study is ECMWF ERA-40 potential vorticity fields on interpolated isentropic surfaces that range from 450K-1450K. Analyses show that the most extreme vortex variability occurs most commonly in late January and early February, consistent with when most planetary wave driving from the troposphere is observed. Composites around sudden stratospheric warming (SSW) events reveal that the moment diagnostics evolve in statistically different ways between vortex splitting events and vortex displacement events, in contrast to the traditional diagnostics. Histograms of the vortex diagnostics on the 850K (∼10hPa) surface over the 1958-2001 period are fitted with parametric distributions, and show that SSW events comprise the majority of data in the tails of the distributions. The distribution of each diagnostic is computed on various surfaces throughout the depth of the stratosphere, and shows that in general the vortex becomes more circular with higher filamentation at the upper levels. The Northern Hemisphere (NH) and Southern Hemisphere (SH) vortices are also compared through the analysis of their respective vortex diagnostics, and confirm that the SH vortex is less variable and lacks extreme events compared to the NH vortex. Finally extreme value theory is used to statistically mo del the vortex diagnostics and make inferences about the underlying dynamics of the polar vortices.
Resumo:
The main purpose of this work is to report the presence of spurious discontinuities in the pattern of diurnal variation of sea level pressure of the three reanalysis datasets from: the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Science (R1), the NCEP and Department of Energy (R2), and the European Centre for Medium Range Weather Forecasting (ERA-40). Such discontinuities can be connected to the major changes in the global observing system that have occurred throughout reanalyses years. In the R1, the richest period in discontinuities is 1956-1958, coinciding with the start of modern radiosonde observation network. Rapid increase in the density of surface-based observations from 1967 also had an important impact on both R1 and ERA-40, with larger impact on R1. The reanalyses show discontinuities in the 1970s related to the assimilation of radiances measured by the Vertical Temperature Profile Radiometer and TIROS-N Operational Vertical Sounders onboard satellites. In the ERA-40, which additionally assimilated Special Sensor Microwave/Imager data, there are discontinuities in 1987-1989. The R1 also presents further discontinuities, in 1988-1993 likely connected to replacement/introduction of NOAA-series satellites with different biases, and to the volcanic eruption of Mount Pinatubo in June 1991, which is known to have severely affected measurements of infrared radiances for several years. The discontinuities in 1996-1998 might be partially connected to change in the type of radiosonde, from VIZ-B to VIZ-B2. The R2, which covers only satellite era (1979-on), shows discontinuities mainly in 1992, 1996-1997, and 2001. The discontinuities in 1992 and 2001 might have been caused by change in the satellite measurements and those in 1996-1997 by some changes in land-based observations network. © 2012 Springer-Verlag.
Resumo:
We reconstructed a high-resolution, alkenone-based sea surface temperature (SST) record spanning the last ca. 150 years, from a sediment core retrieved within the main upwelling zone off Peru. A conspicuous SST decline is evidenced since the 1950s despite interdecadal SST variability. Instrumental SST data and reanalysis of ECMWF ERA 40 winds suggest that the recent coastal cooling corresponds mainly to an intensification of alongshore winds and associated increase of upwelling in spring. Consistently, both proxy and instrumental data evidence increased productivity in phase with the SST cooling. Our data expand on previous reports on recent SST cooling in other Eastern Boundary upwelling systems and support scenarios that relate coastal upwelling intensification to global warming. Yet, further investigations are needed to assess the role of different mechanisms and forcings (enhanced local winds vs. spin-up of the South Pacific High Pressure cell).
Resumo:
[ 1] The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) ozone and water vapor reanalysis fields during the 1990s have been compared with independent satellite data from the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Atmosphere Research Satellite (UARS). In addition, ERA-40 has been compared with aircraft data from the Measurements of Ozone and Water Vapour by Airbus In-Service Aircraft (MOZAIC) program. Overall, in comparison with the values derived from the independent observations, the upper stratosphere in ERA-40 has about 5 - 10% more ozone and 15 - 20% less water vapor. This dry bias in the reanalysis appears to be global and extends into the middle stratosphere down to 40 hPa. Most of the discrepancies and seasonal variations between ERA-40 and the independent observations occur within the upper troposphere over the tropics and the lower stratosphere over the high latitudes. ERA-40 reproduces a weaker Antarctic ozone hole, and of less vertical extent, than the independent observations; values in the ozone maximum in the tropical stratosphere are lower for the reanalysis. ERA-40 mixing ratios of water vapor are considerably larger than those for MOZAIC, typically by 20% in the tropical upper troposphere, and they may exceed 60% in the lower stratosphere over high latitudes. The results imply that the Brewer-Dobson circulation in the ECMWF reanalysis system is too fast, as is also evidenced by deficiencies in the way ERA-40 reproduces the water vapor "tape recorder'' signal in the tropical stratosphere. Finally, the paper examines the biases and their temporal variation during the 1990s in the way ERA-40 compares to the independent observations. We also discuss how the evaluation results depend on the instrument used, as well as on the version of the data.
Resumo:
This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
ERA-40 is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) in collaboration with many institutions. The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of observations from aircraft, ocean-buoys and other surface platforms, but with a declining number of radiosonde ascents since the late 1980s. The observations used in ERA-40 were accumulated from many sources. The first part of this paper describes the data acquisition and the principal changes in data type and coverage over the period. It also describes the data assimilation system used for ERA-40. This benefited from many of the changes introduced into operational forecasting since the mid-1990s, when the systems used for the 15-year ECMWF re-analysis (ERA-15) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis were implemented. Several of the improvements are discussed. General aspects of the production of the analyses are also summarized. A number of results indicative of the overall performance of the data assimilation system, and implicitly of the observing system, are presented and discussed. The comparison of background (short-range) forecasts and analyses with observations, the consistency of the global mass budget, the magnitude of differences between analysis and background fields and the accuracy of medium-range forecasts run from the ERA-40 analyses are illustrated. Several results demonstrate the marked improvement that was made to the observing system for the southern hemisphere in the 1970s, particularly towards the end of the decade. In contrast, the synoptic quality of the analysis for the northern hemisphere is sufficient to provide forecasts that remain skilful well into the medium range for all years. Two particular problems are also examined: excessive precipitation over tropical oceans and a too strong Brewer-Dobson circulation, both of which are pronounced in later years. Several other aspects of the quality of the re-analyses revealed by monitoring and validation studies are summarized. Expectations that the second-generation ERA-40 re-analysis would provide products that are better than those from the firstgeneration ERA-15 and NCEP/NCAR re-analyses are found to have been met in most cases. © Royal Meteorological Society, 2005. The contributions of N. A. Rayner and R. W. Saunders are Crown copyright.
Resumo:
Reanalysis data provide an excellent test bed for impacts prediction systems. because they represent an upper limit on the skill of climate models. Indian groundnut (Arachis hypogaea L.) yields have been simulated using the General Large-Area Model (GLAM) for annual crops and the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40). The ability of ERA-40 to represent the Indian summer monsoon has been examined. The ability of GLAM. when driven with daily ERA-40 data, to model both observed yields and observed relationships between subseasonal weather and yield has been assessed. Mean yields "were simulated well across much of India. Correlations between observed and modeled yields, where these are significant. are comparable to correlations between observed yields and ERA-40 rainfall. Uncertainties due to the input planting window, crop duration, and weather data have been examined. A reduction in the root-mean-square error of simulated yields was achieved by applying bias correction techniques to the precipitation. The stability of the relationship between weather and yield over time has been examined. Weather-yield correlations vary on decadal time scales. and this has direct implications for the accuracy of yield simulations. Analysis of the skewness of both detrended yields and precipitation suggest that nonclimatic factors are partly responsible for this nonstationarity. Evidence from other studies, including data on cereal and pulse yields, indicates that this result is not particular to groundnut yield. The detection and modeling of nonstationary weather-yield relationships emerges from this study as an important part of the process of understanding and predicting the impacts of climate variability and change on crop yields.
Resumo:
Multiple linear regression is used to diagnose the signal of the 11-yr solar cycle in zonal-mean zonal wind and temperature in the 40-yr ECMWF Re-Analysis (ERA-40) dataset. The results of previous studies are extended to 2008 using data from ECMWF operational analyses. This analysis confirms that the solar signal found in previous studies is distinct from that of volcanic aerosol forcing resulting from the eruptions of El Chichón and Mount Pinatubo, but it highlights the potential for confusion of the solar signal and lower-stratospheric temperature trends. A correction to an error that is present in previous results of Crooks and Gray, stemming from the use of a single daily analysis field rather than monthly averaged data, is also presented.