958 resultados para ECHO ENDOSCOPE
Resumo:
Background and Aims: Endoscopic ultrasound (EUS) is useful for the treatment of sterile pancreatic fluid collections (PFC), either by means of transmural drainage or by complete aspiration. The aim of this study was to evaluate the efficacy and safety of single-step EUS-guided endoscopic approaches for treatment of sterile PFC. Patients and Methods: During a 3-year period, 77 consecutive patients with symptomatic, persistent sterile PFC were evaluated and treated with the linear EUS. We excluded patients with grossly purulent collections, chronic pseudocyst and those whose cytology diagnostic was neoplastic cyst of pancreas. 44 patients received a single 10-Fr plastic straight stent under EUS or fluoroscopic control (group I) and 33 of these underwent a single-step complete aspiration with a 19-gauge needle (group II). Results: The mean size of the sterile PFC was 48 mm in group I and 28 mm in group II (p < 0.001). Overall, endoscopic treatment was successful in 70 (90.9%) patients. The mean volume aspirated was 25 (18-65) ml. The total number of procedures was 50 in group I and 41 punctures in group II. After a mean follow-up of 64 +/- 15.6 weeks there were 6 complications 13.6%): 2 recurrences (referred to surgery), 2 developing abscesses (submitted a new EUS-guided endoscopic drainage with success), 1 perforation that died (2.2%), and 1 case of bleeding (sent to surgery) in group I. In group II there were only 6 (18.1%) recurrences (submitted a new EUS-guided aspiration). None of the patients undergoing single-step aspiration developed infections, perforation or hemorrhage. Conclusion: The recurrence of pancreatic pseudocysts after endoscopic treatment was similar, either by means of plastic stents or by complete single-step aspiration. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
Background. Heart transplantation (OHT) has traditionally been contraindicated in the presence of severe pulmonary hypertension (PH), as detected by right heart catheterization. Noninvasive methods are still not reliably accurate to make this evaluation. Objectives. Determine the efficacy of echo Doppler analysis for the diagnosis of severe PH. Methods. One hundred thirty patients (mean age = 42 +/- 15 years, 82 men) showed severe left ventricular dysfunction (mean ejection fraction = 29 +/- 12%; functional class III-IV). We excluded patients with atrial fibrillation, heart failure secondary to congenital disease, and valvulopathy. The pulmonary parameters defined as severe PH were: systolic pulmonary artery pressure (sPAP) >= 60 mm Hg; a mean transpulmonary gradient >= 15; or pulmonary vascular resistance >= 5 Wood units. Patients underwent a right heart catheterization using a Swan-Ganz catheter to measure hemodynamic parameters and to noninvasively estimate right-sided pressures from spectral Doppler recordings of tricuspid regurgitation velocity (right ventricular systolic pressure [RVsP]). A Pearson correlation of sPAP was obtained with RVsP by; the sensitivity of RVsP for the diagnosis of PH was determined by a receiver operating characteristic (ROC) curve. Results. A good correlation between sPAP and RVsP was obtained by Pearson correlation analysis (r = 0.64; 95% confidence interval [CI] 0.50-0.75; P < .001). The ROC curve analysis showed a sensitivity of 100%, a specificity of 37.2%, (95% CI 0.69-0.83, P < .0001) of a RVsP < 45 mm Hg (cutoff) on the exclusion of severe PH. Conclusions. The cutoff of RVsP < 45 mm Hg, on noninvasive echo Doppler evaluation of PH is an efficient method to replace invasive heart catheterization in OHT candidates.
Resumo:
Swallowed prostheses have been described in the literature, and in some cases, the diagnosis can be challenging, especially if the partial or complete denture is metal-free. This article presents a case of a swallowed partial denture and points to the importance of early diagnosis. A man was admitted to the emergency room complaining of progressive breathing difficulty while presenting with an extra volume in his neck. After inconclusive image examinations, endoscopy under sedation was used to identify and retrieve the foreign object, which was a metal-free acrylic partial denture. Early diagnosis and the correct treatment can avoid serious sequelae, such as edematous reactions, mucosal infection, and necrosis. Patients should be scheduled for regular recall visits for evaluation of prosthesis fit and retention, condition of the abutments, and nocturnal wear. Int J Prosthodont 2010;23:339-341.
Resumo:
This paper describes an implementation of a long distance echo canceller, operating on full-duplex with hands-free and in real-time with a single Digital Signal Processor (DSP). The proposed solution is based on short length adaptive filters centered on the positions of the most significant echoes, which are tracked by time delay estimators, for which we use a new approach. To deal with double talking situations a speech detector is employed. The floating-point DSP TMS320C6713 from Texas Instruments is used with software written in C++, with compiler optimizations for fast execution. The resulting algorithm enables long distance echo cancellation with low computational requirements, suited for embbeded systems. It reaches greater echo return loss enhancement and shows faster convergence speed when compared to the conventional approach. The experimental results approach the CCITT G.165 recommendation levels.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2015
Resumo:
PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
The trans-apical aortic valve implantation (TA-AVI) is an established technique for high-risk patients requiring aortic valve replacement. Traditionally, preoperative (computed tomography (CT) scan, coronary angiogram) and intra-operative imaging (fluoroscopy) for stent-valve positioning and implantation require contrast medium injections. To preserve the renal function in elderly patients suffering from chronic renal insufficiency, a fully echo-guided trans-catheter valve implantation seems to be a reasonable alternative. We report the first successful TA-AVI procedure performed solely under trans-oesophageal echocardiogram control, in the absence of contrast medium injections.
Resumo:
Recently, the spin-echo full-intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High-quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 +/- 0.6 Hz at 3T and 12.1 +/- 1.0 Hz at 7T for water) and the high signal-to-noise ratio (SNR) of the artifact-free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér-Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two-fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7-fold increase in average SNR (= peak height/root mean square [RMS]-of-noise) per unit-time.
Resumo:
The Report of an Independent Review of Endoscope Contamination in Northern Ireland
Resumo:
RATIONALE AND OBJECTIVES: Recent developments of MR imaging equipment enabled high-quality steady state-free-precession (Balanced FFE, True-FISP) MR-imaging with a substantial 'T2 like' contrast, resulting in a high signal intensity of the blood-pool without the application of exogenous contrast agents. It is hypothesized that Balanced-FFE may be valuable for contrast enhancement in 3D free-breathing coronary MRA. MATERIALS AND METHODS: Navigator-gated free-breathing cardiac triggered coronary MRA was performed in 10 healthy adult subjects and three patients with radiograph defined coronary artery disease using a segmented k-space 3D Balanced FFE imaging sequence. RESULTS: High contrast-to-noise ratio between the blood-pool and the myocardium (29 +/- 8) and long segment visualization of both coronary arteries could be obtained in about 5 minutes during free breathing using the present navigator-gated Balanced-FFE coronary MRA approach. First patient results demonstrated successful display of coronary artery stenoses. CONCLUSION: Balanced FFE offers a potential alternative for endogenous contrast enhancement in navigator-gated free-breathing 3D coronary MRA. The obtained results together with the relatively short scanning time warrant further studies in larger patient collectives.
Resumo:
PURPOSE: To investigate the feasibility of high-resolution selective three-dimensional (3D) magnetic resonance coronary angiography (MRCA) in the evaluation of coronary artery stenoses. MATERIALS AND METHODS: In 12 patients with coronary artery stenoses, MRCA of the coronary artery groups, including the coronary segments with stenoses of 50% or greater based on conventional x-ray coronary angiography (CAG), was performed with double-oblique imaging planes by orienting the 3D slab along the major axis of each right coronary artery-left circumflex artery (RCA-LCX) group and each left main trunk-left anterior descending artery (LMT-LAD) group. Ten RCA-LCX and five LMT-LAD MR angiograms were obtained, and the results were compared with those of conventional x-ray angiography. RESULTS: Among 70 coronary artery segments expected to be covered, a total of 49 (70%) segments were fully demonstrated in diagnostic quality. The identification of segmental location of stenoses showed as high an accuracy as 96%. The retrospective analysis for stenosis of 50% or greater yielded the sensitivity, specificity, and accuracy of 80%, 85%, and 84%, respectively. CONCLUSION: Selective 3D MRCA has the potential for segment-by-segment evaluation of major portions of the right and left coronary arteries with high accuracy.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
Due to SNR constraints, current "bright-blood" 3D coronary MRA approaches still suffer from limited spatial resolution when compared to conventional x-ray coronary angiography. Recent 2D fast spin-echo black-blood techniques maximize signal for coronary MRA at no loss in image spatial resolution. This suggests that the extension of black-blood coronary MRA with a 3D imaging technique would allow for a further signal increase, which may be traded for an improved spatial resolution. Therefore, a dual-inversion 3D fast spin-echo imaging sequence and real-time navigator technology were combined for high-resolution free-breathing black-blood coronary MRA. In-plane image resolution below 400 microm was obtained. Magn Reson Med 45:206-211, 2001.