1000 resultados para ECDYSTEROID RECEPTOR
Resumo:
Retinoid X receptor (RXR)/ultraspiracle (USP) is the heterodimeric partner of ecdysteroid receptor and is required for the molting process of arthropods. To better understand the molecular aspects governing the process of molting in shrimp, the full-length cDNA of two RXRs, named as FcRXR-1 and FcRXR-2 were obtained from Chinese shrimp Fenneropenaeus chinensis which were of 1715 and 1700 bp long, revealed a 1315 and 1300 bp open reading frame (ORF) respectively. Quantitative Real time PCR analysis showed a marked tissue-specific difference in the expression of FcRXR transcript, which revealed that the expression of FcRXR Could be regulated in a tissue-specific manner. Moreover, high expression of FcRXR mRNAs was observed in late pre-molt period (D3) and post molt stages (A-B) of shrimp. Among the two isoforms, FcRXR-2 appeared in a considerably high level in all the stages compared to the FcRXR-1. In addition, we examined the temporal expression of two chitinase genes: FcChitinase (FcChi) and FcChitinase-1 (FcChi-1) during the molt cycle of F chinensis. Both the FcChi and FcChi-1 transcripts were detected in all stages of molting, although considerable fluctuations observed through the molt cycle. Injection of double stranded RXR (dsRXR) into juvenile shrimp resulted in a maximum silencing effect at 48 h post injection. We analyzed the expression levels of FcChi, FcChi-1 and the ecdysone inducible gene E75 (FcE75) in samples of dsRXR injected shrimp. Significant reduction in levels of both FcE75, FcChi and FcChi-1 transcripts Occurred in the silenced shrimp. This correlation suggested that RXR might involve in the downstream regulation of E75 and chitinase gene transcription in the ecdysone signaling pathway of decapod crustaceans. (C) 2009 Published by Elsevier Inc.
Resumo:
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
本论文主要研究两种重要的调节蜕皮过程的基因—蜕皮激素效应基因E75和RXR在中国明对虾蜕皮中的作用。利用RT-PCR和RACE技术获得了编码FcE75和FcRXR的全长cDNA序列。FcRXR包含7个内含子,在对虾中存在不同的异形体,命名为RXR-1和RXR-2。应用荧光实时定量PCR分析表明FcE75和FcRXR基因在中国明对虾蜕皮前期(D3)其转录表达量明显上调。另外,FcE75和FcRXR基因在不同组织中的转录表达存在明显的差异。利用FcE75和FcRXR基因的双链RNA注射对虾能有效降低FcE75和FcRXR的表达水平。FcE75和FcRXR的体内沉默完全抑制了对虾的蜕皮过程,并且引起对虾的死亡。对不能正常蜕皮个体进行观察的结果表明,FcE75沉默的对虾,其上皮的收缩、新的刚毛及新表皮的形成均收到限制。在FcE75双链RNA沉默后的对虾中,我们检测了与蜕皮相关的一些效应因子,如chitinase等的转录,发现这些效应因子的转录明显受到抑制,说明FcE75和FcRXR在蜕皮过程中起到非常重要的作用。本论文首次阐明了这些基因在十足目甲壳动物蜕皮过程中的功能。
Resumo:
The last few years have seen dramatic advances in genomics, including the discovery of a large number of non-coding and antisense transcripts. This has revolutionised our understanding of multifaceted transcript structures found within gene loci and their roles in the regulation of development, neurogenesis and other complex processes. The recent and continuing surge of knowledge has prompted researchers to reassess and further dissect gene loci. The ghrelin gene (GHRL) gives rise to preproghrelin, which in turn produces ghrelin, a 28 amino acid peptide hormone that acts via the ghrelin receptor (growth hormone secretagogue receptor/GHSR 1a). Ghrelin has many important physiological and pathophysiological roles, including the stimulation of growth hormone (GH) release, appetite regulation, and cancer development. A truncated receptor splice variant, GHSR 1b, does not bind ghrelin, but dimerises with GHSR 1a, and may act as a dominant negative receptor. The gene products of ghrelin and its receptor are frequently overexpressed in human cancer While it is well known that the ghrelin axis (ghrelin and its receptor) plays a range of important functional roles, little is known about the molecular structure and regulation of the ghrelin gene (GHRL) and ghrelin receptor gene (GHSR). This thesis reports the re-annotation of the ghrelin gene, discovery of alternative 5’ exons and transcription start sites, as well as the description of a number of novel splice variants, including isoforms with a putative signal peptide. We also describe the discovery and characterisation of a ghrelin antisense gene (GHRLOS), and the discovery and expression of a ghrelin receptor (growth hormone secretagogue receptor/GHSR) antisense gene (GHSR-OS). We have identified numerous ghrelin-derived transcripts, including variants with extended 5' untranslated regions and putative secreted obestatin and C-ghrelin transcripts. These transcripts initiate from novel first exons, exon -1, exon 0 and a 5' extended 1, with multiple transcription start sites. We used comparative genomics to identify, and RT-PCR to experimentally verify, that the proximal exon 0 and 5' extended exon 1 are transcribed in the mouse ghrelin gene, which suggests the mouse and human proximal first exon architecture is conserved. We have identified numerous novel antisense transcripts in the ghrelin locus. A candidate non-coding endogenous natural antisense gene (GHRLOS) was cloned and demonstrates very low expression levels in the stomach and high levels in the thymus, testis and brain - all major tissues of non-coding RNA expression. Next, we examined if transcription occurs in the antisense orientation to the ghrelin receptor gene, GHSR. A novel gene (GHSR-OS) on the opposite strand of intron 1 of the GHSR gene was identified and characterised using strand-specific RT-PCR and rapid amplification of cDNA ends (RACE). GHSR-OS is differentially expressed and a candidate non-coding RNA gene. In summary, this study has characterised the ghrelin and ghrelin receptor loci and demonstrated natural antisense transcripts to ghrelin and its receptor. Our preliminary work shows that the ghrelin axis generates a broad and complex transcriptional repertoire. This study provides the basis for detailed functional studies of the the ghrelin and GHSR loci and future studies will be needed to further unravel the function, diagnostic and therapeutic potential of the ghrelin axis.
Resumo:
It is known that adenosine 5'-triphosphate (ATP) is a cotransmitter in the heart. Additionally, ATP is released from ischemic and hypoxic myocytes. Therefore, cardiac-derived sources of ATP have the potential to modify cardiac function. ATP activates P2X(1-7) and P2Y(1-14) receptors; however, the presence of P2X and P2Y receptor subtypes in strategic cardiac locations such as the sinoatrial node has not been determined. An understanding of P2X and P2Y receptor localization would facilitate investigation of purine receptor function in the heart. Therefore, we used quantitative PCR and in situ hybridization to measure the expression of mRNA of all known purine receptors in rat left ventricle, right atrium and sinoatrial node (SAN), and human right atrium and SAN. Expression of mRNA for all the cloned P2 receptors was observed in the ventricles, atria, and SAN of the rat. However, their abundance varied in different regions of the heart. P2X(5) was the most abundant of the P2X receptors in all three regions of the rat heart. In rat left ventricle, P2Y(1), P2Y(2), and P2Y(14) mRNA levels were highest for P2Y receptors, while in right atrium and SAN, P2Y(2) and P2Y(14) levels were highest, respectively. We extended these studies to investigate P2X(4) receptor mRNA in heart from rats with coronary artery ligation-induced heart failure. P2X(4) receptor mRNA was upregulated by 93% in SAN (P < 0.05), while a trend towards an increase was also observed in the right atrium and left ventricle (not significant). Thus, P2X(4)-mediated effects might be modulated in heart failure. mRNA for P2X(4-7) and P2Y(1,2,4,6,12-14), but not P2X(2,3) and P2Y(11), was detected in human right atrium and SAN. In addition, mRNA for P2X(1) was detected in human SAN but not human right atrium. In human right atrium and SAN, P2X(4) and P2X(7) mRNA was the highest for P2X receptors. P2Y(1) and P2Y(2) mRNA were the most abundant for P2Y receptors in the right atrium, while P2Y(1), P2Y(2), and P2Y(14) were the most abundant P2Y receptor subtypes in human SAN. This study shows a widespread distribution of P2 receptor mRNA in rat heart tissues but a more restricted presence and distribution of P2 receptor mRNA in human atrium and SAN. This study provides further direction for the elucidation of P2 receptor modulation of heart rate and contractility.
Resumo:
Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.
Resumo:
Problem: Chlamydia trachomatis is the most common sexually transmitted infection worldwide. While infection in females requires a Th1 response for clearance, such a response in males may disrupt the immune privileged nature of the male reproductive tract, potentially contributing to infertility. Method of study: We investigated the role of IgA in protection against an intrapenile Chlamydia muridarum infection of C57BL/6 and pIgR−/− mice. Results: Here, we show that the poly immunoglobulin receptor is the main pathway for IgA transport into the male reproductive tract. The high levels of IgA seen in prostatic fluid of wild-type mice correlate with reduction in chlamydial infection both in vitro and in vivo. Conclusion: These findings indicate that a Chlamydia vaccine that induces neutralizing IgA in the prostate will aid in the protection against infection in males.
Resumo:
The androgen receptor (AR) is a ligand-activated transcription factor of the nuclear receptor superfamily that plays a critical role in male physiology and pathology. Activated by binding of the native androgens testosterone and 5-dihydrotestosterone, the AR regulates transcription of genes involved in the development and maintenance of male phenotype and male reproductive function as well as other tissues such as bone and muscle. Deregulation of AR signaling can cause a diverse range of clinical conditions, including the X-linked androgen insensitivity syndrome, a form of motor neuron disease known as Kennedy’s disease, and male infertility. In addition, there is now compelling evidence that the AR is involved in all stages of prostate tumorigenesis including initiation, progression, and treatment resistance. To better understand the role of AR signaling in the pathogenesis of these conditions, it is important to have a comprehensive understanding of the key determinants of AR structure and function. Binding of androgens to the AR induces receptor dimerization, facilitating DNA binding and the recruitment of cofactors and transcriptional machinery to regulate expression of target genes. Various models of dimerization have been described for the AR, the most well characterized interaction being DNA-binding domain- mediated dimerization, which is essential for the AR to bind DNA and regulate transcription. Additional AR interactions with potential to contribute to receptor dimerization include the intermolecular interaction between the AR amino terminal domain and ligand-binding domain known as the N-terminal/C-terminal interaction, and ligand-binding domain dimerization. In this review, we discuss each form of dimerization utilized by the AR to achieve transcriptional competence and highlight that dimerization through multiple domains is necessary for optimal AR signaling.
Resumo:
Background A complete explanation of the mechanisms by which Pb2+ exerts toxic effects on developmental central nervous system remains unknown. Glutamate is critical to the developing brain through various subtypes of ionotropic or metabotropic glutamate receptors (mGluRs). Ionotropic N-methyl-D-aspartate receptors have been considered as a principal target in lead-induced neurotoxicity. The relationship between mGluR3/mGluR7 and synaptic plasticity had been verified by many recent studies. The present study aimed to examine the role of mGluR3/mGluR7 in lead-induced neurotoxicity. Methods Twenty-four adult and female rats were randomly selected and placed on control or 0.2% lead acetate during gestation and lactation. Blood lead and hippocampal lead levels of pups were analyzed at weaning to evaluate the actual lead content at the end of the exposure. Impairments of short -term memory and long-term memory of pups were assessed by tests using Morris water maze and by detection of hippocampal ultrastructural alterations on electron microscopy. The impact of lead exposure on mGluR3 and mGluR7 mRNA expression in hippocampal tissue of pups were investigated by quantitative real-time polymerase chain reaction and its potential role in lead neurotoxicity were discussed. Results Lead levels of blood and hippocampi in the lead-exposed rats were significantly higher than those in the controls (P < 0.001). In tests using Morris Water Maze, the overall decrease in goal latency and swimming distance was taken to indicate that controls had shorter latencies and distance than lead-exposed rats (P = 0.001 and P < 0.001 by repeated-measures analysis of variance). On transmission electron microscopy neuronal ultrastructural alterations were observed and the results of real-time polymerase chain reaction showed that exposure to 0.2% lead acetate did not substantially change gene expression of mGluR3 and mGluR7 mRNA compared with controls. Conclusion Exposure to lead before and after birth can damage short-term and long-term memory ability of young rats and hippocampal ultrastructure. However, the current study does not provide evidence that the expression of rat hippocampal mGluR3 and mGluR7 can be altered by systemic administration of lead during gestation and lactation, which are informative for the field of lead-induced developmental neurotoxicity noting that it seems not to be worthwhile to include mGluR3 and mGluR7 in future studies. Background