66 resultados para ECAP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with dynamic recrystallization (DRX), static recrystallization, and grain growth phenomena of pure magnesium after equal channel angular pressing (ECAP) by route A and B-C at 523 K (250 A degrees C) followed by 80 pct cold rolling. The ECAP-deformed and the subsequently rolled samples were annealed at 373 K and 773 K (100 A degrees C and 500 A degrees C). The associated changes in the microstructure and texture were studied using electron back-scattered diffraction. ECAP produced an average grain size of 12 to 18 A mu m with B and C-2 fiber textures. Subsequent rolling led to an average grain size 8 to 10 A mu m with basal texture fiber parallel to ND. There was no noticeable increase in the average grain size on annealing at 373 K (100 A degrees C). However, significant increase in the average grain size occurred at 773 K (500 A degrees C). The occurrence of different DRX mechanisms was detected: discontinuous dynamic recrystallization was attributed to basal slip activity and continuous dynamic recovery and recrystallization to prismatic/pyramidal slip systems. Only continuous static recrystallization could be observed on annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用等径角挤压技术对2A12铝合金在室温下进行挤压,成功制备了亚微米尺度的块体铝合金材料.挤压前材料的平均晶粒尺寸约5μm,两次挤压后,平均晶粒尺寸细化至200nm左右.合金中的Al2Cu相在挤压过程中由针状变成了块状颗粒,而Al2CuMg相在挤压过程中晶粒大小基本不变.研究发现,硬颗粒Al.2CuMg对基体α-Al有剪切和割裂作用,可以促进基体的晶粒细化过程,并初步给出了晶粒细化的模型.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of hydrogen content on the compaction of Ti–6Al–4V powder at low temperatures, namely 500 °C, using equal channel angular pressing (ECAP) with back pressure has been investigated. The properties of the compacts before and after a heat treatment and de-hydrogenation cycle have been determined. Compaction of powder by ECAP (500 °C and 260 MPa) has shown maximum levels of relative density of 99.3% and 99.4% when charged with 0.05–0.1 wt.% and 0.61–0.85 wt.% of hydrogen, respectively. After the de-hydrogenation heat treatment the diffusion bonding between individual powder particles was completed and the microstructure was altered, depending on the level of hydrogen content. Two local maxima of 99.2% and 98.1% were observed in the measured density of consolidated compacts for hydrogen contents between 0.05 wt.% and 0.1 wt.% and between 0.61 wt.% and 0.85 wt.%, respectively. However, the mechanical properties of the compacts within these two ranges of hydrogen content were significantly different due to a difference in the observed microstructure. An exceptionally high ductility of 29%, in combination with a relatively high strength of ~560 MPa, was measured in a shear punch test on specimens which had a prior hydrogen level of 0.05 wt.% before the heat treatment. It was shown that material consolidated from powder hydrogenated to low levels of hydrogen before compaction has the potential to offer substantial improvements in mechanical properties after a suitable heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 View the MathML source1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical compound action potentials (ECAPs) of the cochlear nerve are used clinically for quick and efficient cochlear implant parameter setting. The ECAP is the aggregate response of nerve fibres at various distances from the recording electrode, and the magnitude of the ECAP is therefore related to the number of fibres excited by a particular stimulus. Current methods, such as the masker-probe or alternating polarity methods, use the ECAP magnitude at various stimulus levels to estimate the neural threshold, from which the parameters are calculated. However, the correlation between ECAP threshold and perceptual threshold is not always good, with ECAP threshold typically being much higher than perceptual threshold. The lower correlation is partly due to the very different pulse rates used for ECAPs (below 100 Hz) and clinical programs (hundreds of Hz up to several kHz). Here we introduce a new method of estimating ECAP threshold for cochlear implants based upon the variability of the response. At neural threshold, where some but not all fibers respond, there is a different response each trial. This inter-trial variability can be detected overlaying the constant variability of the system noise. The large stimulus artefact, which requires additional trials for artefact rejection in the standard ECAP magnitude methods, is not consequential, as it has little variability. The variability method therefore consists of simply presenting a pulse and recording the ECAP, and as such is quicker than other methods. It also has the potential to be run at high rates like clinical programs, potentially improving the correlation with behavioural threshold. Preliminary data is presented that shows a detectable variability increase shortly after probe offset, at probe levels much lower than those producing a detectable ECAP magnitude. Care must be taken, however, to avoid saturation of the recording amplifier saturation; in our experiments we found a gain of 300 to be optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples of electrolytic tough pitch (ETP) pure copper were subjected to 12 passes of Equal-Channel Angular Pressing (ECAP) at room temperature with and without back pressure. Subsequent annealing was performed to evaluate the influence of back pressure during ECAP on the thermal behavior of ultrafine-grained copper. The microstructural and hardness changes caused by annealing were characterized by orientation imaging microscopy (OIM) and microhardness measurements. The application of back pressure resulted in an earlier drop in hardness upon annealing, which is believed to be associated with a lower critical temperature for the initiation of recrystallization and a rapid coarsening of microstructure. Regardless of whether back pressure was applied or not, structure coarsening during short-time annealing of ECAP-processed copper was governed by discontinuous static recrystallization. This is seen as a result of microstructure heterogeneity. Analysis of recrystallization kinetics was carried out based on observations of the microstructure after annealing in terms of the Avrami equation. The magnitude of the apparent activation energies for recrystallization in the absence of back pressure and in the case of back pressure of 100 MPa was estimated to be ~99 kJ/mol and ~91 kJ/mol, respectively. The reasons for reduced activation energy in the case of processing with back pressure are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally believed that thermo-hydrogen processing has a beneficial effect on tensile ductility and fatigue properties of titanium. This study was concerned with investigating whether this also applies to titanium of commercial purity (CP) with an ultrafine-grained structure obtained by equal-channel angular pressing (ECAP). It was shown that despite the possibility to manipulate the microstructure of titanium the thermo-hydrogen processing offers, temporary hydrogenation was not able to improve ductility and low cycle fatigue life of CP titanium over the levels achievable by straight ECAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructure, thermal stability and hardness of ultra-fine grained (UFG) Ni produced by 12 passes of equal channel angular pressing (ECAP) through the route Bc were studied. Comparing the microstructure and hardness of the as-ECAPed samples with the published data on UFG Ni obtained after 8 passes of ECAP through the route Bc reveals a smaller average grain size (230 nm in the present case compared with 270 nm in 8-pass Ni), significantly lower dislocation density (1.08 x 10(14) m(-2) compared with 9 x 10(14) m(-2) in 8-pass Ni) and lower hardness (2 GPa compared with 2.45 GPa for 8-pass Ni). Study of the thermal stability of the 12-pass UFG Ni revealed that recovery is dominant in the temperature range 150-250A degrees C and recrystallisation occurred at temperatures > 250 A degrees C. The UFG microstructure is relatively stable up to about 400 A degrees C. Due to the lower dislocation density and consequently a lower stored energy, the recrystallisation of 12-pass ECAP Ni occurred at a higher temperature (similar to 250 A degrees C) compared with the 8-pass Ni (similar to 200 A degrees C). In the 12-pass Nickel, hardness variation shows that its dependence on grain size is inversely linear rather than the common grain size(-0.5) dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were A (E) /(A) over bar (E) and B(E)/(B) over bar (E) in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evolution of texture and concomitant grain refinement during Equal Channel Angular Pressing (ECAP) of Ti - 13Nb - 13Zr alloy has been presented. Sub-micron sized equiaxed grains with narrow grain size distribution could be achieved after eight pass at 873 K. A characteristic ECAP texture evolved in alpha phase till four passes while the evolution of characteristic ECAP texture in the beta phase could be observed only beyond the fourth pass. On increasing the deformation up to eight passes, the texture in alpha phase weakens while the beta phase shows an ideal ECAP texture. A weaker texture, low dislocation density and high crystallite size values in alpha phase suggest the occurrence of dynamic recrystallization. The absence of texture evolution in beta phase till four passes can be attributed to local lattice rotations. The characteristic ECAP texture in the eight pass deformed sample is attributed to delayed dynamic recrystallization in the beta phase. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted similar to 55 degrees due to negative shear attributed to friction. (C) 2015 Elsevier Inc. All rights reserved.