755 resultados para EBV reactivation
Resumo:
Epstein-Barr virus (EBV) has been consistently associated with multiple sclerosis (MS), but whether this virus is a trigger of MS remains undetermined. Recently, EBV-infected B cells recognized by activated CD8_ T cells have been detected in the meninges of autopsied MS patients. In addition, a strong EBV-specific CD8_ T cell response in the blood of patients with MS of recent onset was reported. Here, to further explore the putative relationship between MS and EBV, we assessed the EBV-specific cellular and humoral immune responses in the blood and the cerebrospinal fluid (CSF) of patients with early MS or other neurological diseases, separated into inflammatory (IOND) and non-inflammatory (NIOND) groups. The MS non-associated neurotropic herpesvirus cytomegalovirus (CMV) served as a control. Fifty-eight study subjects were enrolled, including 44 patients (13 with early MS (onset of MS less than one year prior to the assay), 15 with IOND and 16 with NIOND) in the immunological arm of the study. The cellular immune response was investigated using a functional CFSE cytotoxic T lymphocyte (CTL) assay performed with short-term cultured EBV- or CMVspecific effector T cells from the CSF and the blood. The humoral immune response specific for these two viruses was also examined in both the blood and the CSF. The recruitment of a given virusspecific antibody in the CSF as compared to the blood was expressed as antibody indexes (AI). We found that, in the CSF of early MS patients, there was an enrichment in EBV-, but not CMV-specific, CD8_ CTL as compared to the CSF of IOND (P_ 0.003) and NIOND patients (P_0.0009), as well as compared to paired blood samples (P_0.005). Additionally, relative viral capsid antigen (VCA)-, but not EBV encoded nuclear antigen 1 (EBNA1)- or CMV-specific, AI were increased in the CSF of early MS as compared to IOND (P_0.002) or NIOND patients (P_0.008) and correlated with the EBVspecific CD8_ CTL responses in the CSF (rs_0.54, P_0.001). Fourteen additional patients were enrolled in the virological arm of the study: using semi-nested PCR, EBV-encoded nuclear RNA1 (EBER1)-a transcript expressed during all stages of EBV infection-was detected in the CSF of 2/4 early MS, but only 1/6 IOND and 0/4 NIOND patients. Altogether, our data suggest that a reactivation of EBV, but not CMV, is taking place in the central nervous system of patients with MS of recent onset. These data significantly strengthen the link between EBV and MS and may indicate a triggering role of EBV in this disease. This work was supported by grants from the Swiss National Foundation and from the Swiss Society for Multiple Sclerosis.
Resumo:
Twenty-four whole blood and serum samples were drawn from an eight year-old heart transplant child during a 36 months follow-up. EBV serology was positive for VCA-IgM and IgG, and negative for EBNA-IgG at the age of five years old when the child presented with signs and symptoms suggestive of acute infectious mononucleosis. After 14 months, serological parameters were: positive VCA-IgG, EBNA-IgG and negative VCA-IgM. This serological pattern has been maintained since then even during episodes suggestive of EBV reactivation. PCR amplified a specific DNA fragment from the EBV gp220 (detection limit of 100 viral copies). All twenty-four whole blood samples yielded positive results by PCR, while 12 out of 24 serum samples were positive. We aimed at analyzing whether detection of EBV-DNA in serum samples by PCR was associated with overt disease as stated by the need of antiviral treatment and hospitalization. Statistical analysis showed agreement between the two parameters evidenced by the Kappa test (value 0.750; p < 0.001). We concluded that detection of EBV-DNA in serum samples of immunosuppressed patients might be used as a laboratory marker of active EBV disease when a Real-Time PCR or another quantitative method is not available.
Resumo:
Antiretroviral-therapy has dramatically changed the course of HIV infection and HIV-infected (HIV(+)) individuals are becoming more frequently eligible for solid-organ transplantation. However, only scarce data are available on how immunosuppressive (IS) strategies relate to transplantation outcome and immune function. We determined the impact of transplantation and immune-depleting treatment on CD4+ T-cell counts, HIV-, EBV-, and Cytomegalovirus (CMV)-viral loads and virus-specific T-cell immunity in a 1-year prospective cohort of 27 HIV(+) kidney transplant recipients. While the results show an increasing breadth and magnitude of the herpesvirus-specific cytotoxic T-cell (CTL) response over-time, they also revealed a significant depletion of polyfunctional virus-specific CTL in individuals receiving thymoglobulin as a lymphocyte-depleting treatment. The disappearance of polyfunctional CTL was accompanied by virologic EBV-reactivation events, directly linking the absence of specific polyfunctional CTL to viral reactivation. The data provide first insights into the immune-reserve in HIV+ infected transplant recipients and highlight new immunological effects of thymoglobulin treatment. Long-term studies will be needed to assess the clinical risk associated with thymoglobulin treatment, in particular with regards to EBV-associated lymphoproliferative diseases.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
Resumo:
Protective T cell responses againstpersistent viruses like Epstein-Barrvirus in healthy individuals are characterizedby a remarkable stability ofthe T cell receptor (TCR) clonotypicrepertoire, with highly preservedclonotype selection and persistenceover time. Here, we extended recentwork to the study of EBV-specificCD8 T cell responses in melanomapatients treated by short-term chemotherapyfor transient lymphodepletion,followed by adoptive cell transfer(ACT) and immune reconstitutionfor cancer therapy. After this treatment,we observed increased proportionsof virus-specific T cells in 3/5patients, accompanied by a more differentiatedphenotype (EMRA/CD28neg), compared to specific cells ofhealthy individuals. Yet, similarly tohealthy donors, clonotype selectionand composition of virus-specific Tcells varied along the pathway of celldifferentiation, with some clonotypesthat were selected with late differentiation,while others were not. Aftertreatment, we did not observe noveldominant clonotypes, likely related toabsence of EBV reactivation measuredas viral load levels by quantitativePCR in PBMCs and antibody levelsin plasma samples. Furthermore,public TCR BV signatures were frequentlyfound within T cell clonotypesthat dominated the repertoiresof patients, in line with those observedin healthy individuals. Ourfindings indicate that even in situationswhere the immune system isstrongly challenged such as followinglymphodepletion and homeostatic repopulation,cytotoxic T cells specificfor EBV remain strikingly stable interms of clonotype selection and com-position along T cell differentiation.We are currently characterizing theclonotype selection and gene expressionprofiles of single EBV-specificCD8 T lymphocytes sorted ex-vivo inone patient who underwent two cyclesof lymphodepletion with escaladingdoses of chemotherapy overone-year interval. Observations madefrom this setting will provide additionalinsight into the degree of stabilityof virus specific T cells, and changesin the expression levels of genesimportant for cytolytic function andlong-term survival of T cells. Thiswork is supported by the Swiss NationalCenter of Competence in Research(NCCR) Molecular Oncology,and the Swiss National Science Foundation.
Resumo:
Introduction: Epstein-Barr Virus(EBV) has been repeatedly associatedwith multiple sclerosis (MS). Wehave previously shown that there is ahigh peripheral as well as intrathecalactivation of EBV-, but not cytomegalovirus(CMV)-specific CD8+ Tcells, early in the course of MS,strengthening the link between EBVand MS. However, the trigger of thisincreased EBV-specific CD8+ T cellresponse remains obscure. It could resultfrom a higher EBV viral load. Alternatively,it could be due to an intrinsicallydeficient EBV-specificCTL response, cytotoxic granulesmediated.Thus, we performed anin-depth study of the phenotype of exvivo EBV- and CMV-specific CD8+T cells in MS patients and control patients,assessing their cytotoxic activity.Methods:We analyzed the profileof cytotoxic granules in EBV- andCMV-specific CD8+ T cells in a cohortof 13 early MS patients, 20 lateMS, 30 other neurological diseases(OND) patients and 7 healthy controlsubjects. Ex vivo analysis of EBV- orCMV-specific CD8+ T cells was performedusing HLA class I/tetramercomplexes coupled to CCR7 andCD57 markers in conjunction withperforin, granzymes A, BandKstaining.In a sub-cohort of MS patientsand controls, cytotoxic activity ofEBV- and CMV-specific CD8+ Tcells was investigated using a functionalCFSE CTL assay. Results: UsingHLA Class I tetramers for EBVand CMV, we found that the frequencyof EBV- or CMV-specificCD8+ T cells were similar in all studysubjects. Most of EBV- and CMVspecificCD8+Tcells were highly differentiated(CCR7-) and a variousproportion expressed the exhaustionmarker CD57. MS and OND patientshad increased perforin expression inEBV-specific CD8+ T cells. Most importantly,we found that MS patientswith longer disease duration tended tohave lower CTL cytotoxicity as comparedto earlyMSpatients or controls.Conclusions: Effector EBV-specificCD8+ T cells are increased in earlyMS, however their cytotoxic granuleprofile does not seem to be fully alteredand the cytotoxic activity ofthese cells is normal. However, thecytotoxic activity of CTL decreasedin late MS patients suggesting an exhaustionof EBV-specific CD8+ Tcells possibly due to EBV reactivation.This work was supported by theSwiss National Foundation PP00B3-124893, the Swiss Society for MS,and the Biaggi Foundation to RADP.
Resumo:
RÉSUMÉ La sclérose en plaques (SEP) est une maladie démyélinisante du système nerveux central (SNC) qui touche le plus souvent de jeunes femmes. Bien qu'elle ait été décrite pour la première fois il y a plus de 200 ans, son étiologie n'est pas encore complètement comprise. Contrairement à d'autres maladies purement génétiques, l'épidémiologie de la SEP ne peut être que partiellement expliquée par des facteurs génétiques. Ceci suggère que des facteurs environnementaux pourraient être impliqués dans la pathogenèse de la SEP. Parmi ceux-ci, le virus d'Epstein-Barr (EBV) est un excellent candidat, comme cela a été démontré par de larges études séroépidémiologiques ainsi que pax l'évaluation de la réponse cellulaire dans le sang. Bien que le SNC soit en fait la cible des réponses immunitaires anormales dans la SEP, peu d'études ont été accomplies sur les réponses immunitaires spécifiques à EBV dans ce compartiment. Ceci est particulièrement vrai chez des patients vivants chez lesquels des biopsies sont rarement effectuées, ainsi que pour les réponses cellulaires car très peu de cellules immunitaires peuvent être obtenues du SNC. Nous avons donc développé des conditions de cultures et un readout nous permettant d'étudier le nombre réduit de cellules disponibles dans le liquide céphalo-rachidien (LCR), qui représente le seul matériel pouvant être obtenu du SNC de patients SEP vivants. Nous avons trouvé que les réponses cellulaires et humorales spécifiques à EBV étaient augmentées dans le LCR des patients SEP comparé à du sang pairé, ainsi que par rapport à des patients avec d'autres maladies neurologiques inflammatoires et noninflammatoires. Afin de déterminer si les réponses immunitaires augmentées contre EBV étaient spécifiques à ce virus ou si elles reflétaient simplement une hyperactivation immunitaire aspécifique, nous avons comparé les réponses spécifiques à EBV avec celles spécifiques au cytomegalovirus (CNN). En effet, comme EBV, CNN est un herpesvirus neurotropique qui peut établir des infections latentes, mais ce dernier n'est pas considéré comme étant associé à la SEP. De façon intéressante, les réponses immunitaires spécifiques à CNN trouvées dans le LCR étaient plus basses que dans le sang, et ceci dans toutes les catégories de patients. Ces données suggèrent qu'une réactivation d'EBV pourrait avoir lieu dans le SNC des patients SEP à un stade précoce de la maladie et renforcent fortement l'hypothèse qu'EBV pourrait avoir un rôle déclencheur dans cette maladie. Ainsi, il pourrait être intéressant d'explorer si un traitement ou un vaccin efficace contre EBV peut prévenir le développement de la SEP. On ne connaît toujours pas la raison pour laquelle les réponses immunitaires spécifiques à EBV sont augmentées chez les patients SEP. Une hypothèse est que la réponse immunitaire est qualitativement différente chez les patients SEP par rapports aux contrôles. Pour examiner ceci, nous avons évalué le profile cytokinique de lymphocytes T CD4+ et CD8+ stimulés par EBV, mais nous n'avons pas pu mettre en évidence de différence remarquable entre patients SEP et sujets sains. Cette question reste donc ouverte et d'autres études sont justifiées. Il n'existe pas de marqueur fiable de la SEP. Ici, nous avons trouvé que la cytokine IL-26, récemment décrite, était augmentée dans les lymphocytes T CD8+ des patients avec une SEP secondairement progressive comparé à des patients SEP en poussée, des patients avec une SEP primairement progressive, des patients avec d'autres maladies neurologiques inflammatoires, ou des sujets sains. De plus, nous avons identifié des types de cellules dérivées du cerveau (astrocytes, oligodendrocytes et neurones) qui exprimaient le récepteur de l'IL-26. Ceci ouvre la voie à d'autres études afin de mieux comprendre la fonction de l'II.-26 et son interaction avec la. SEP. SUMMARY : Multiple sclerosis (MS) is a demyelinating disease affecting the central nervous system (CNS), mostly in young female adults. Although it was first described 200 years ago, its etiology is still not completely understood. Contrary to other purely genetic diseases, genetics can explain only part of MS epidemiology. Therefore, environmental factors that might be involved in MS pathogenesis were searched for. Among them, Epstein-Barr virus (EBV) is a strong potential candidate, such as shown by large seroepidemiological studies and cellular immune response assessments in the blood. Although the CNS is the actual target of abnormal immune responses in MS, few studies have been performed on EBV-specific immune responses in this compartment. This is particularly true for live patients, from which biopsy material is almost never available, and for cellular immune responses, since very few immune cells are available from the CNS. We therefore developed culture conditions and a readout that were compatible with the study of the reduced number of cells found in the cerebrospinal fluid (CSF), the only readily available material from the CNS of live ' MS patients. We found that EBV-specific cellular and humoral immune responses were increased in the CSF of MS patients as compared with paired blood, as well as compared with the CSF of patients with other inflammatory and non-inflammatory neurological diseases. To determine whether the enhanced immune responses against EBV were specific of this virus or simply reflected an aspecific immune hyperactivation, we compared the EBV- with the cytomegalovirus (CMV)-specific immune responses. Indeed, like EBV, CMV is a neurotrophic herpesvirus that can establish latent infections, but the latter is not considered to be associated with MS. Interestingly, CSF CMV-specific immune responses were lower than blood ones and this, in all patient categories. These findings suggest that EBV reactivation may be taking place in the CNS of patients at the early stages of MS and strengthen the hypothesis that EBV may have a triggering role in this disease. Therefore, it might be interesting to explore whether an efficient anti-EBV drug or vaccine is able to prevent MS development. The reason why EBV-specific immune responses are increased in MS patients is still missing. One hypothesis might be that the immune response against EBV is qualitatively different in MS patients as compared with controls. To examine this, we assessed the cytokine mRNA profile of EBV-stimulated CD4+ and CD8+ T cells, but could not find any remarkable difference between MS patients and healthy controls. Therefore, this question remains open and fiirther studies are warranted. Reliable disease markers are lacking for MS. Here, we found that the recently described cytokine IL-26 was increased in CD8+ T cells of patients with secondary progressive MS as compared with relapsing MS, primary progressive MS, other inflammatory neurological diseases and healthy controls. Moreover, we identified brain cell types (astrocytes, oligodendrocytes and neurons) that expressed the IL-26 receptor, paring the way for further studies to understand IL-26 function and its interaction with MS.
Resumo:
Summary The mechanisms regulating the protective immune T-cell responses generated against the persistent Epstein-Barr virus (EBV) and Cytomegaloviru_s (CNIV) remain poorly understood. We analyzed the dynamics of cellular differentiation and T-cell receptor (TCR) clonotype selection of EBV- and CMV-specific T-cells in healthy adults and melanoma patients. While these responses could be subdivided into four T lymphocyte populations, théir proportions varied between EBV and CMV specific responses. Phenotypic and TCR clonotypic analyses supported a linear model of differentiation from the early-differentiated (EM/CD28pos) subset to the late-differentiatdc (EMRA/CD28neg) subset. In-depth clonal composition analyses revealed TCR repertoires, which were highly restricted for CMV- and relatively diverse for EBV-specific cells. Virtually all virus-specific clonotypes identified in the EMRA/CD28neg subset were also found within the pool of less differentiated "memory" cells. However, striking differences in the patterns of dominance were observed among these subsets, as some clonotypes were selected with differentiation, while others were not. Latedifferentiated CMV-specific clonotypes were mostly characterized by TCRs with lower dependency on CD8 co-receptor interaction. Yet all clonotypes displayed similar functional avidities, suggesting a compensatory role of CD8 in the clonotypes of lower TCR avidity. Importantly, clonotype selection and composition of each virus-specific subset upon differentiation was highly preserved over time, with the presence of the same dominant clonotypes at specific differentiation stages within a period of four years. This work was extended to the study of EBV-specific CD8 T-cell responses in melanoma patients undergoing transient lymphodepletion, followed by adoptive cell transfer (ACT) and immune reconstitution for thè treatment of their tumors. Following treatment regimen, we first observed an increase in the proportion of virus-specific T-cells in 3 out of 5 patients, accompanied by a more differentiated phenotype (EMRA/CD28neg), compared to specific cells of healthy individuals. Yet, similarly to healthy donors, clonotype selection and composition of virus-specific T-cells varied along the pathway of cellular differentiation, with some clonotypes being selected with differentiation, while others were not. Intriguingly, no novel clonotypes emerged following transient immuno-suppression and homeostatic proliferation, finding which was subsequently explained by the absence of EBV reactivation. The distribution of each clonotype within early- and late-differentiated T-cell subsets in 4 out 5 patients was highly stable over time, with those clonotypes initially found before the start of treatment that were again present at specific differentiation stages after transient lymphodepletion and ACT. These findings uncover novel features of the highly sophisticated control of steady state protective T-cell immune responses against persistent herpesviruses in healthy adults. Furthermore they reveal the striking stability of these responses in terms of clonotype selection and composition with T-cell differentiation even in situations where the immune system has been. challenged. Résumé : Les mécanismes qui régulent les réponses immunitaires de type protectrices, générées contre les virus chroniquement persistants tels que l'Epstein-Barr (EBV) ou le Cytomegalo (CMV) restent largement inconnus. Nous avons analysé la différenciation des lymphocytes T spécifiques pour ces virus, ainsi que la composition des clonotypes T (par leur récepteur T) chez les donneurs sains. Les réponses immunes peuvent être classifiées en quatre souspopulations majeures de lymphocytes T, cependant, leur proportion varie entre les réponses spécifiques contre EBV ou CMV. Ces analyses soutiennent le modèle linéaire de différenciation, à partir de la population non différenciée (EM/CD28pos) vers la population plus différenciée (ENIIZA/CD28neg). De plus, nos données sur la composition clonale de ces cellules T spécifiques ont révélé des répertoires TCR restreints, pour la réponse anti-CMV, et relativement diversifiés contre EBV. Tous les clonotypes spécifiques de ces virus identifiés dans la sous-population différenciée EMRA/CD28neg, ont également été retrouvés dans la population de cellules "mémoires". Toutefois, de fortes différences ont été observées dans les schémas de domination de ces sous-populations, en effet, certains clonotypes étaient sélectionnés avec la différenciation, alors que d'autres ne l'étaient pas. Nous avons également démontré que ces clonotypes différenciés et spécifiques pour le CMV sont caractérisés par des TCRs à faible dépendance en regard de la coopération du corécepteur CD8. Néanmoins, tous les clonotypes affichent une avidité fonctionnelle similaire, suggérant un rôle compensatoire du CD8, dans le cas des clonotypes avec une faible avidité du TCR En définitive, la composition et la sélection des clonotypes spécifiques pour chaque virus et pour chaque sous-population suit un schéma de différenciation hautement conservé au cours du temps, avec la présence de ces mêmes clonotypes au même stade de différenciation sur une période de quatre ans. Ce travail a été étendu à l'étude des réponses T CD8+ spécifiques pour le virus EBV chez les patients atteints de mélanome et recevant dans le cadre du traitement de leurs tumeurs une lymphodéplétion transitoire, suivie d'un transfert adoptif de cellules et d'une reconstitution immunitaire. Au cours de cette thérapie, nous avons en premier lieu observé pour 3 des 5 patients une augmentation de la proportion de cellules T spécifiques pour le virus, accompagné d'un phénotype plus différencié (EMRA/CD28neg), et ceci comparativement à des cellules spécifiques d'individus sains. Pourtant, comme nous l'avons observé chez les donneurs sains, la sélection et la composition des clonotypes T spécifiques varient tout au long de la différenciation cellulaire, avec certains clonotypes sélectionnés et d'autres qui ne le sont pas. Étonnamment, aucun nouveau clonotype n'a émergé après l'immuno-suppression transitoire et la prolifération homéostatique. Cette observation trouve son explication par une absence de réactivation du virus EBV chez ces patients, et ce malgré leur traitement. De plus, la distribution de chaque clonotype parmi ces sous-populations non-différenciées et différenciées reste stable au cours du traitement. Ainsi, les mêmes clonotypes initialement identifiés avant le début du traitement sont présents aux mêmes stades de différenciation après la lymphodéplétion et la prolifération homéostatique. Ces résultats ont permis d'identifier de nouveaux mécanismes impliqués dans la régulation hautement «sophistiquée » des réponses immunitaires T contre les virus persistants EBV et CMV chez les donneurs sains. En particulier, ils révèlent la grande stabilité de ces réponses en termes de sélection et de composition des clonotypes avec la différenciation cellulaire, et ce dans les situations chroniques, ainsi que dans les situations dans lesquelles le système immunitaire a été profondément perturbé.
Resumo:
Fifty-two cases of monomorphic post-transplant lymphoproliferative disorders (M-PTLD), developed in patients undergone solid organ or bone marrow transplantation, were studied by the application of the tissue micro-array (TMA) technology. They included 50 cases of diffuse large B-cell lymphomas (DLBCL) and 2 Burkitt lymphomas (BL). In order to evaluate the immune-profile a large panel of antibodies was applied including several new markers (Cyclin D2, Cyclin D3, p27, PKC-β, FOXP-1 and Survivin) identified as negative prognostic factors in DLBCL of the immunocompetent patient. Out of 50 DLBCL, 23 cases (46%) had an Activated B Cell (ABC) phenotype, 8 (16%) a Germinal Centre B-cell (GCB) phenotype, and 11 (22%) an Unclassified (UC) phenotype. In 8 cases (16%) the subtype was not demonstrable due to sub-optimal preservation or loss of the tissue core. FISH analysis detected BCL2 gene amplification and MYC rearrangement. EBV was identified in 32 cases (64%) performing immunohistochemistry (LMP-1) and in situ hybridization (EBER). Clinical data and follow-up were available in all cases of malignant lymphomas but one. Thirty-two patients died for progression of disease or complications related to transplant (bleeding, bacterial infections, and multi-organ failure); 17 patients are actually alive and disease-free. M-PTLD are aggressive lymphomas characterized by very poor outcome. The neoplastic process is stimulated by a prolonged immunosuppressive status which is capable to induce alterations of the immune system and allow EBV reactivation in previously infected patients. Indeed EBV infection seems to be the most significant risk factor to predict the development of a PTLD while age, sex, site of involvement and type of transplant do not have significant correlation. Furthermore DLBCL arisen in a setting of immunodeficiency share phenotypic and molecular features with DLBCL of the immunocompetent patient. In particular, the former shows a high incidence of BCL2 gene amplification and this aberration typically correlates with “non-GCB” phenotype. Also M-PTLD do express prognostic markers (PKC-β, cyclin D2, FOXP-1, and Survivin): notably, in our study, PKC-β and FOXP-1 were frequently expressed and they were predictive of a shorter overall survival even in lymphomas recognized to have a good prognosis (GCB-type). Given the fact that such molecules are detectable at the time of the diagnosis, we postulate whether a “tailored” or more specific therapy might be applied in the management of the immune-compromised patient.
Resumo:
BACKGROUND: Hepatitis E virus (HEV) is the most recently discovered of the hepatotropic viruses, and is considered an emerging pathogen in developed countries with the possibility of fulminant hepatitis in immunocompromised patients. Especially in the latter elevated transaminases should be taken as a clue to consider HEV infection, as it can be treated by discontinuation of immunosuppression and/or ribavirin therapy. To our best knowledge, this is a unique case of autochthonous HEV infection with coincident reactivation of Epstein-Barr virus (EBV) infection in an immunosuppressed patient with rheumatoid arthritis (RA). CASE PRESENTATION: A 68-year-old Swiss woman with RA developed hepatitis initially diagnosed as methotrexate-induced liver injury, but later diagnosed as autochthonous HEV infection accompanied by reactivation of her latent EBV infection. She showed confounding serological results pointing to three hepatotropic viruses (HEV, Hepatitis B virus (HBV) and EBV) that could be resolved by detection of HEV and EBV viraemia. The patient recovered by temporary discontinuation of immunosuppressive therapy. CONCLUSIONS: In immunosuppressed patients with RA and signs of liver injury, HEV infection should be considered, as infection can be treated by discontinuation of immunosuppression. Although anti-HEV-IgM antibody assays can be used as first line virological tools, nucleic acid amplification tests (NAAT) for detection of HEV RNA are recommended--as in our case--if confounding serological results from other hepatotropic viruses are obtained. After discontinuation of immunosuppressive therapy, our patient recovered from both HEV infection and reactivation of latent EBV infection without sequelae.
Resumo:
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with many malignant and nonmalignant human diseases. Life-long latent EBV persistence occurs in blood-borne B lymphocytes, while EBV intermittently productively replicates in mucosal epithelia. Although several models have previously been proposed, the mechanism of EBV transition between these two reservoirs of infection has not been determined. In this study, we present the first evidence demonstrating that EBV latently infects a unique subset of blood-borne mononuclear cells that are direct precursors to Langerhans cells and that EBV both latently and productively infects oral epithelium-resident cells that are likely Langerhans cells. These data form the basis of a proposed new model of EBV transition from blood to oral epithelium in which EBV-infected Langerhans cell precursors serve to transport EBV to the oral epithelium as they migrate and differentiate into oral Langerhans cells. This new model contributes fresh insight into the natural history of EBV infection and the pathogenesis of EBV-associated epithelial disease.
Resumo:
Background: Leprosy is a chronic granulomatous infectious disease and is still endemic in many parts of the world. It causes disabilities which are the consequence of nerve damage. This damage is in most cases the result of immunological reactions. Objectives: To investigate the differences between a type 1 leprosy (reversal) reaction and relapse on using histopathology. Methods: The histopathological changes in 167 biopsies from 66 leprosy patients were studied. The patients were selected when their sequential biopsies demonstrated either different patterns or maintained the same pattern of granulomatous reaction over more than two years during or after the treatment of leprosy. Results: In 57 of the patients studied, a reactivation was seen which coincided with a decrease in the bacteriological index (BI), suggesting that this reactivation (reversal reaction or type 1 leprosy reaction) coincides with an effective capacity for bacteriological clearance. In nine patients, an increase of the bacteriologic index (IB) or persistence of solid bacilli occurred during the reactivation, indicating proliferative activity, suggestive of a relapse. The histopathological aspects of the granulomas were similar in both groups. Conclusion: Bacterioscopy provided the only means to differentiate a reversal reaction from a relapse in patients with granulomatous reactivation. The type 1 leprosy reaction may be considered as a part effective immune reconstitution (reversal, upgrading reaction) or as a mere hypersensitivity reaction (downgrading reaction) in a relapse.
Resumo:
Background: Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed. Methodology: Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not. Principal Findings: qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman's correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4(+) cells or the CD4(+)/CD8(+) ratio. Conclusions: qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4(+) cells/mm(3) and the CD4(+)/CD8(+) ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy.
Resumo:
Background: Chagas` disease is the illness caused by the protozoan Trypanosoma cruzi and it is still endemic in Latin America. Heart transplantation is a therapeutic option for patients with end-stage Chagas` cardiomyopathy. Nevertheless, reactivation may occur after transplantation, leading to higher morbidity and graft dysfunction. This study aimed to identify risk factors for Chagas` disease reactivation episodes. Methods: This investigation is a retrospective cohort study of all Chagas` disease heart transplant recipients from September 1985 through September 2004. Clinical, microbiologic and histopathologic data were reviewed. Statistical analysis was performed with SPSS (version 13) software. Results: Sixty-four (21.9%) patients with chronic Chagas` disease underwent heart transplantation during the study period. Seventeen patients (26.5%) had at least one episode of Chagas` disease reactivation, and univariate analysis identified number of rejection episodes (p = 0.013) and development of neoplasms (p = 0.040) as factors associated with Chagas` disease reactivation episodes. Multivariate analysis showed that number of rejection episodes (hazard ratio = 1.31; 95% confidence interval [CI]: 1.06 to 1.62; p = 0.011), neoplasms (hazard ratio = 5.07; 95% CI: 1.49 to 17.20; p = 0.009) and use of mycophenolate mofetil (hazard ratio = 3.14; 95% CI: 1.00 to 9.84; p = 0.049) are independent determinants for reactivation after transplantation. Age (p = 0.88), male gender (p = 0.15), presence of rejection (p = 0.17), cytomegalovirus infection (p = 0.79) and mortality after hospital discharge (p = 0.15) showed no statistically significant difference. Conclusions: Our data suggest that events resulting in greater immunosuppression status contribute to Chagas` disease reactivation episodes after heart transplantation and should alert physicians to make an early diagnosis and perform pre-emptive therapy. Although reactivation led to a high rate of morbidity, a low mortality risk was observed.