2 resultados para EBP50
Resumo:
Colorectal cancer (CRC) develops from multiple progressive modifications of normal intestinal epithelium into adenocarcinoma. Loss of cell polarity has been implicated as an early event in this process, but the molecular players involved are not well known. NHERF1 (Na+/H+ Exchanger Regulatory Factor 1) is an adaptor protein with apical membrane localization in polarized epithelia. In this study, we tested our hypothesis that NHERF1 plays a role in CRC. We examined surgical CRC resection specimens for changes in NHERF1 expression, and modeled these changes in two- and three-dimensional (2D and 3D) Caco-2 CRC cell systems. NHERF1 had significant alterations from normal to adenoma and carcinoma transitions (2=38.5, d.f.=4, P<0.001), displaying apical membrane localization in normal tissue but loss of expression in adenoma and ectopic overexpression in carcinoma. In Caco-2 cell models, NHERF1 depletion induced epithelial-mesenchymal-transition in 2D cell monolayers and disruption of apical-basal polarity in 3D cyst system. The mesenchymal phenotype of NHERF1-depleted cells was fully restored by re-expression of NHERF1 at the apical membrane. Cytoplasmic and nuclear NHERF1 re-expression not only failed to restore the epithelial phenotype but led to more aggressive phenotypes. Our findings suggest that membrane NHERF1 is an important regulator of epithelial morphogenesis, and that changes in NHERF1 expression correlate with CRC progression. NHERF1 loss and ectopic expression that induce massive disruption of epithelial cell polarity may, thereby, mark important steps in CRC development.
Resumo:
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.