967 resultados para EARED BAT
Resumo:
10 p.
Resumo:
Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.
Resumo:
Animals can call on a multitude of sensory information to orient and navigate. In some cases they may calibrate these cues against each other to establish the most accurate information available. One such cue is the pattern of polarized light in the sky, which may be used as a geographical reference to calibrate other cues in the compass mechanism. Mammals, however, have not been shown to use this cue, even though they do calibrate a magnetic compass with sunset. In this paper we demonstrate that bats use polarization cues at sunset to calibrate a magnetic compass, subsequently used for orientation during a homing experiment. It is thus the only mammal known so far to make use of the polarization pattern in the sky. This is an intriguing finding as currently there is no clear understanding of how this cue is perceived in this taxon and has general implications for the sensory biology of mammalian vision.
Resumo:
Two of the five subspecies of the western big-eared bat, Corynorhinus townsendii, are listed as federally endangered with the remaining three being of conservation concern. Knowing the degree of connectivity among populations would aid in the establishment of sound conservation and management plans for this taxon. For this purpose, we have developed and characterized eight polymorphic microsatellite markers.
Resumo:
We developed and characterized 15 microsatellite markers for Rafinesque’s big-eared bat, Corynorhinus rafinesquii. In a population from Tennessee, the number of alleles per locus ranged from three to 13 and observed heterozygosities were 0.35 to 0.97 per locus. These loci will provide appropriate variability for estimation of population connectivity, demographic parameters, and genetic diversity for this species of concern.
Resumo:
Knowledge of the habitat requirements of bat species is needed in decision making in land use planning. Bats' hibernation requirements were studied both in Estonia and in southern Finland. In both countries, the northern bat and the brown long-eared bat hibernated in colder and drier locations, whereas Daubenton's bat and Brandt's/whiskered bats hibernated in warmer and more humid locations. In Estonia, the pond bat hibernated in the warmest and most humid conditions, whereas Natterer's bat hibernated in the coldest and driest conditions. Hibernacula were at their coldest in mid-season and became warmer towards the end of the season. The results suggest that bats made an active choice of colder hibernation temperatures at the seasons end. They minimised the negative effects of hibernation early in the hibernation season by hibernating in warmer locations and energy expenditure late in the hibernation season by hibernating in colder locations. The use of foraging habitats was studied in northern and southern Finland. The northern bat used foraging sites opportunistically. Daubenton's bat foraged mainly in water habitats, whereas Brandt's/whiskered bats and the brown long-eared bat foraged mainly in forest habitats. In northern Finland, Daubenton's bats foraged almost exclusively on rivers and typically together with the northern bat. Daubenton's bats and Brandt's/whiskered bats were found only where there were lower ambient light levels. One of the most important things in the management of foraging areas for them is to keep them shady. Hibernacula in Finland typically housed few bats, suggesting that hibernation sites used by even a small number of bats are important. Bats typically used natural stone for hibernation suggesting that natural underground sites in rocks or cliffs or man-made underground sites built using natural stone are important for them. The results suggest that appropriate timing of surveys may vary according to the species and latitude.
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Resumo:
Levels of genetic relatedness within bat colonies are often unknown, and consequently the reasons for group formation and social organization are unclear. The Leisler's bat (Nyctalus leisleri), like most temperate bat species, forms nursery colonies in summer. We used microsatellite markers to examine identity and to attempt to estimate relatedness among females within a nursery colony, over 2 consecutive years, to ascertain whether females show kinship and natal philopatry, testing the hypothesis that this is the basis of colony formation. Parentage and relatedness of young born within a colony was assessed to investigate mating patterns via male reproductive skew and whether males achieve mating success within their natal colony. While there was evidence for female philopatry, levels of genetic relatedness within colonies were low. This suggests that kinship is not a major determinant in group formation, as roosts also comprise a large number of distant relatives or non-kin. Roost switching and gene flow are likely to be high. Both sexes reproduced in their first year, whereas males appear to be the more dispersive sex. We argue that the physical environment as well as information sharing provided by communal roosting are likely to be important factors for the formation of these large natal colonies in N. leisleri and possibly other lineages of bats. © 2012 The Author.
Resumo:
Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.
Resumo:
Assessing the ecological requirements of species coexisting within a community is an essential requisite for developing sound conservation action. A particularly interesting question is what mechanisms govern the stable coexistence of cryptic species within a community, i.e. species that are almost impossible to distinguish. Resource partitioning theory predicts that cryptic species, like other sympatric taxa, will occupy distinct ecological niches. This prediction is widely inferred from eco-morphological studies. A new cryptic long-eared bat species, Plecotus macrobullaris, has been recently discovered in the complex of two other species present in the European Alps, with even evidence for a few mixed colonies. This discovery poses challenges to bat ecologists concerned with planning conservation measures beyond roost protection. We therefore tested whether foraging habitat segregation occurred among the three cryptic Plecotus bat species in Switzerland by radiotracking 24 breeding female bats (8 of each species). We compared habitat features at locations visited by a bat versus random locations within individual home ranges, applying mixed effects logistic regression. Distinct, species-specific habitat preferences were revealed. P. auritus foraged mostly within traditional orchards in roost vicinity, with a marked preference for habitat heterogeneity. P. austriacus foraged up to 4.7 km from the roost, selecting mostly fruit tree plantations, hedges and tree lines. P. macrobullaris preferred patchy deciduous and mixed forests with high vertical heterogeneity in a grassland dominated-matrix. These species-specific habitat preferences should inform future conservation programmes. They highlight the possible need of distinct conservation measures for species that look very much alike.
Resumo:
Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.
Resumo:
We examined factors affecting roost tree selection by the white-striped freetail bat Tadarida australis (Chiroptera: Molossidae), a large insectivorous bat in suburban Brisbane, Australia. We compared biophysical characteristics associated with 34 roost trees and 170 control trees of similar diameter, height and tree senescence characters. Roost trees used by the white-striped freetail bat had significantly higher numbers of hollows in the trunk and branches (P < 0.003) and were more likely to contain a large trunk cavity with an internal diameter of > 30 cm (P < 0.001) than control trees. These trees also accommodated more species of hollow-using fauna (P = 0.005). When comparing roost trees with control trees of similar diameters and heights, roost trees were on average at a later stage of tree senescence (P < 0.001). None of the roost trees were found in the large forest reserves fringing the Brisbane metropolitan area despite these areas being used for foraging by the white-striped freetail bat. Although all tree locations in this study were in modified landscapes, roost trees tended to be surrounded by groups of trees and undergrowth. Roost trees provide important habitat requirements for hollow-using fauna in suburban, rural and forested environments.
Resumo:
7 p.
Resumo:
In the present thesis I examined individual and sex-specific habitat use and site fidelity in the western barbastelle bat, Barbastella barbastellus, using data from a four-year monitoring in a Special Area of Conservation in Rhineland-Palatinate, Germany. The western barbastelle occurs in central and southern Europe from Portugal to the Caucasus, but is considered to be rare in large parts of its range. Up to now, long-term field studies to assess interannual site fidelity and the possible effects of intra- and interspecific competition have not been studied in this species. Nevertheless, such data provide important details to estimate the specific spatial requirements of its populations, which in turn can be incorporated in extended conservation actions. I used radio-telemetry, home range analyses und automated ultrasound detection to assess the relation between landscape elements and western barbastelle bats and their roosts. In addition, I estimated the degree of interspecific niche overlap with two selected forest-dwelling bat species, Bechstein's bat (Myotis bechsteinii) and the brown long-eared bat (Plecotus auritus). Intra- and interannual home range overlap analyses of female B. barbastellus revealed that fidelity to individual foraging grounds, i.e. a traditional use of particular sites, seems to effect the spatial distribution of home ranges more than intraspecific competition among communally roosting females. The results of a joint analysis of annual maternity roost selection and flight activities along commuting corridors highlight the necessity to protect roost complexes in conjunction with commuting corridors. Using radio-tracking data and an Euclidean distance approach I quantified the sex-specific and individual habitat use by female and male western barbastelle bats within their home ranges. My data indicated a partial sexual segregation in summer habitats. Females were found in deciduous forest patches and preferably foraged along linear elements within the forest. Males foraged closer to forest edges and in open habitats. Finally, I examined the resource partitioning between the western barbastelle bat and two syntopic bat species with a potential for interspecific competition due to similarities in foraging strategies, prey selection and roost preferences. Simultaneous radio-tracking of mixed-species pairs revealed a partial spatial separation of the three syntopic bat species along a gradient from the forest to edge habitats and open landscape. Long-eared bats were found close to open habitats which were avoided by the other two species. B. barbastellus preferred linear landscape elements (edge habitats) and forests, M. bechsteinii also preferred forest habitats. Only little overlap in terms of roost structure and tree species selection was found.