780 resultados para E. carotovora subsp. carotovora
Resumo:
A ocorrência de Pectobacterium carotovorum subsp. carotovorum (=Erwinia carotovora subsp. carotovora) em cebolinha (Allium fistulosum) é relatada pela primeira vez na região norte do Brasil. Até então sua ocorrência estava registrada apenas no Distrito Federal.
Resumo:
The objetive of this work was to identify the pectolytic bacteria associated with soft rot of arracacha roots in Brazil. From 1998 to 2001, 227 isolates of Erwinia spp. were obtained from arracacha roots and identified by biochemical and physiological tests (pectolytic activity, lecithinase, a-methyl glucoside, phosphatase, erythromycin sensivity, growth at 37ºC). Of these isolates, 89.9% were identified as E. chrysanthemi (Ech), 9.7% as E. carotovora subsp. carotovora (Ecc) and 0.5% as E. carotovora subsp. atroseptica. The identity of seventeen out of twenty representative isolates of Ech and Ecc was confirmed by PCR (primers '149f', 'L1r', 'ADE1', 'ADE2').
Resumo:
Erwinia carotovora subsp. atroseptica (Eca), E. carotovora subsp. carotovora (Ecc) and E. chrysanthemi (Ech) may cause potato (Solanum tuberosum) blackleg. To determine the occurrence of these pathogens in the conditions found in the State of Rio Grande do Sul (RS), potato plants showing blackleg symptoms were harvested from 22 fields in nine counties in Serra do Nordeste, Planalto, Depressão Central, and Grandes Lagoas, from September to December of 1999 (Spring-Summer season). Green pepper (Capsicum annuum) fruits were used as a host to enrich for pectolytic erwinia from potato stems with blackleg symptoms. Bacteria were subsequently isolated on non-selective medium. Isolates that were Gram-negative, facultatively anaerobic, and pitted crystal-violet-pectate medium were tested for biochemical traits to identify the species and subspecies. Four hundred strains were identified as either Eca, Ecc or Ech. Although the three erwinias were found in RS potato fields, only three strains of Ech were found in one field. Frequencies of Eca and Ecc were 55 and 42%, respectively. Eight strains could not be assigned based on the biochemical characterization.
Resumo:
En alcauciles (Cynara scolymus L.) de la variedad Bleek cultivados en Coquimbito (Mendoza, Argentina) se observó marcada detención del crecimiento y atraso en la formación de las inflorescencias. Las plantas sanas tenían aprox. 1 m de altura mientras las enfermas no llegaban a 30 cm. Las hojas más externas manifestaban clorosis y leve marchitez con posterior necrosis. Se realizaron aislamientos en APG desarrollándose colonias de aspecto mucoso, sobreelevadas, de color castaño claro. También se sembró en medio Kelman base sin TZ desarrollando colonias de iguales características pero con bordes festoneados típicos del género Erwinia. Pruebas bioquímicas y de patogenicidad en invernáculo resultaron positivas. Se identificó a Erwinia carotovora (Jones) Bergey et al. subsp. carotovora Dye, como agente causal de esta podredumbre radical en alcaucil.
Resumo:
Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.
Resumo:
Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.
Resumo:
Background: Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis. Results: Through transposon insertion mutagenesis, 10,000 mutants of Xanthomonas citri subsp. citri strain 306 (Xcc) were obtained, and 3,300 were inoculated in Rangpur lime (Citrus limonia) leaves. Their ability to cause citrus canker was analyzed every 3 days until 21 days after inoculation; a set of 44 mutants showed altered virulence, with 8 presenting a complete loss of causing citrus canker symptoms. Sequencing of the insertion site in all 44 mutants revealed that 35 different ORFs were hit, since some ORFs were hit in more than one mutant, with mutants for the same ORF presenting the same phenotype. An analysis of these ORFs showed that some encoded genes were previously known as related to pathogenicity in phytobacteria and, more interestingly, revealed new genes never implicated with Xanthomonas pathogenicity before, including hypothetical ORFs. Among the 8 mutants with no canker symptoms are the hrpB4 and hrpX genes, two genes that belong to type III secretion system (TTSS), two hypothetical ORFS and, surprisingly, the htrA gene, a gene reported as involved with the virulence process in animal-pathogenic bacteria but not described as involved in phytobacteria virulence. Nucleic acid hybridization using labeled cDNA probes showed that some of the mutated genes are differentially expressed when the bacterium is grown in citrus leaves. Finally, comparative genomic analysis revealed that 5 mutated ORFs are in new putative pathogenicity islands. Conclusion: The identification of these new genes related with Xcc infection and virulence is a great step towards the understanding of plant-pathogen interactions and could allow the development of strategies to control citrus canker.
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
Bacteriocins produced by lactic acid bacteria are gaining increased importance due to their activity against undesirable microorganisms in foods. In this study, a concentrated acid extract of a culture of Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian pork product, was purified by cation exchange and reversed-phase chromatographic methods. The amino acid sequences of the active antimicrobial compounds determined by Edman degradation were compared to known protein sequences using the BLAST-P software. Three different antimicrobial compounds were obtained, P1, P2 and P3, and mass spectrometry indicated molecular masses of 4.4, 6.8 and 9.5 kDa, respectively. P1 corresponds to classical sakacin P, P2 is identical to the 30S ribosomal protein S21 of L. sakei subsp. sakei 23 K, and P3 is identical to a histone-like DNA-binding protein HV produced by L. sakei subsp. sakei 23 K. Total genomic DNA was extracted and used as target DNA for PCR amplification of the genes sak, lis and his involved in the synthesis of P1, P2 and P3. The fragments were cloned in pET28b expression vector and the resulting plasmids transformed in E. coli KRX competent cells. The transformants were active against Listeria monocytogenes, indicating that the activity of the classical sakacin P produced by L. sakei 2a can be complemented by other antimicrobial proteins.
Resumo:
The study compared the growth capability of probiotic (Lactobacillus acidophilus La05, Lactobacillus casei Lc01 and Bifidobacterium animalis Bb12) and non-probiotic (Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus) cultures on twenty-one culture media grouped according to selectivity: nonselective agars, selective agars without antibiotics and MRS agars containing different combinations of lithium chloride, cystein, bile salts and antibiotics. Four of these media were selected for quantitative enumeration of L acidophilus La05, L casei Lc01, and B. animalis Bb12. The best culture media and incubation conditions for enumeration of the probiotic cultures were: B. animalis: MRS agar with dicloxacillin, 37 degrees C or 42 degrees C, anaerobiosis; L acidophilus: MRS agar with bile salts, 37 degrees C or 42 degrees C, aerobiosis; L casei: MRS agar with lithium chloride and sodium propionate, 37 degrees C or 42 degrees C, aerobiosis or anaerobiosis. Plating on MRS with glucose replaced by maltose, 37 degrees C or 42 degrees C, anaerobiosis, will distinguish probiotic from non-probiotic cultures. For enumeration of each probiotic in a mixed culture, the following media and incubation conditions were recommended: B. animalis: 4ABC-MRS, 42 degrees C, anaerobiosis, L acidophilus: LC medium, 42 degrees C, aerobiosis or anaerobiosis and L casei: LP-MRS, 42 degrees C, aerobiosis or anaerobiosis. In all experiments, differences in counts using pour plating or surface plating were not significant (P <= 0.05). (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.
Resumo:
To report the isolation of six Staphylococcus hominis subsp. novobiosepticus (SHN) strains from hospitalized patients with bloodstream infections in two Brazilian hospitals and to characterize their susceptibility profile to several antimicrobials. Species identification was performed by biochemical methods and sodA gene sequencing. The MICs of antimicrobials were determined by broth and agar dilution methods and by Etest. Isolates were typed by PFGE and PCR amplification was used to detect the ccr gene complex and the mec class. Morphometric evaluation of cell wall was performed by transmission electron microscopy (TEM). Susceptibility profiles indicated that the majority of isolates (five) were multidrug-resistant. Overlapping and multiplex PCR showed that five out of the six strains harboured SCCmec type III with class A mec and type 3 ccr. The initial vancomycin MIC value of 4 mg/L for these strains increased to 16-32 mg/L after growth for 10 days in BHI broth supplemented with this antimicrobial. TEM indicated that vancomycin resistance was associated with cell wall thickening and to another mechanism not fully elucidated. Only one SHN strain was oxacillin- and vancomycin-susceptible. The nosocomial infections in at least five of the patients from both hospitals were caused by a single clone of SHN. It is very important to consider SHN strains as the cause of nosocomial infections. The clinical implications resulting from the pattern of multidrug resistance in these strains may be complicated by the emergence of vancomycin resistance.
Resumo:
Probiotic properties of Lactobacillus amylovorus DSM 16698 were previously demonstrated in piglets. Here, its potential as a human probiotic was studied in vitro, using the TIM-1 system, which is fully validated to simulate the human upper gastrointestinal tract. To evaluate the effect of the food matrix composition on the survival of L amylovorus DSM 16698 in TIM-1, the microorganism was inoculated alone or with prebiotic galactooligosaccharides (GOS), partially skimmed milk (PSM) and/or commercial probiotic Bifidobacterium animalis subsp. lactis Bb-12 (Bb-12). Samples were collected from TIM-1 for six hours, at one-hour intervals and L amylovorus populations were enumerated on MRS agar plates with confirmation of identity of selected isolates by randomly amplified polymorphic DNA (RAPD) fingerprinting. The cumulative survival for L amylovorus alone (control) was 30% at the end of the experiment (t = 6 h). Co-administration of L amylovorus with GOS. PSM and/or Bb-12 increased its survival in comparison with the control significantly from the 4th hour after ingestion onwards (P<0.05). Furthermore, by the use of High Performance Anion Exchange Chromatography, both L amylovorus and Bb-12 were observed to promptly degrade GOS compounds in samples collected from TIM-1, as assessed at t = 2 h. Hence, food matrix composition interfered with survival and growth of L. amylovorus during passage through TIM-1, providing leads towards optimization of probiotic properties in vivo. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
As a consequence of the transfer of the type species Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, the name of the genus Conglomeromonas must be changed in accordance with Rule 37a(1) of the International Code of Nomenclature of Bacteria. Consequently, it is proposed that the subspecies Conglomeromonas largomobilis subsp, parooensis be transferred to the genus Skermanella gen, nov. as the type species Skermanella parooensis gen, nov., sp, nov. This taxon belongs to an isolated subline of descent in the Azospirillum branch of the alpha-Proteobacteria. The spelling of the specific epithet of Azospirillum largomobile is corrected to Azospirillum largimobile.
Resumo:
Plant cyanogenesis, the release of cyanide from endogenous cyanide-containing compounds, is an effective herbivore deterrent. This paper characterises cyanogenesis in the Australian tree Eucalyptus polyanthemos Schauer subsp. vestita L. Johnson and K. Hill for the first time. The cyanogenic glucoside prunasin ((R)-mandelonitrile beta-D-glucoside) was determined to be the only cyanogenic compound in E. polyanthemos foliage. Two natural populations of E. polyanthernos showed quantitative variation in foliar prumasin concentration, varying from zero (i.e. acyanogenic) to 2.07 mg CN g(-1) dry weight in one population and from 0.17 to 1.98 mg CN g(-1) dry weight in the other. No significant difference was detected between the populations with respect to the mean prunasin concentration or the degree of variation in foliar prunasin, despite significant differences in foliar nitrogen. Variation between individuals was also observed with respect to the capacity of foliage to catabolise prunasin to form cyanide. Moreover, variation in this capacity generally correlated with the amount of prunasin in the tissue, suggesting genetic linkage between prunasin and beta-glucosidase. (C) 2002 Elsevier Science Ltd. All rights reserved.