551 resultados para E-compass
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
Compass Points: The Locations, Landscapes and Coordinates of Identities' the Australasian Association for Theatre, Drama and Performance Studies (ADSA) Conference 2012 was held at Queensland University of Technology, July 3-6 2012. The Conference was sponsored by the Australasian Association for Theatre, Drama and Performance Studies (ADSA), Queensland University of Technology (QUT), Ian Potter Foundation, Arts Queensland, La Boite Theatre Company and Queensland Theatre Company. The papers selected for this collection represent a small sample of the scope, depth and diversity of scholarship presented at the conference - they cover a range of genres, cultures and contexts in contemporary performance making from autobiography, to playwrighting, to public space performance and beyond. The papers collected have been peer-reviewed to Australia’s Department of Education, Science and Training (DEST) standards - each has been subject to two blind reviews, followed by acceptance, rejection or revision, and editing of accepted papers - by colleagues from Australasia and overseas. The review process for the conference publication was separate from the review process for acceptance of abstracts for the actual conference presentations. The conference convenors, Bree Hadley and Caroline Heim, edited the collection, and would like to thank all those who gave their time to advise on the peer review process and act as reviewers - Tom Burvill, Christine Comans, Sean Edgecomb, Angela Campbell, Natalie Lazaroo, Jo Loth, Meg Mumford, Ulrike Garde, Laura Ginters, Andre Bastian, Sam Trubridge, Delyse Ryan, Georgia Seffrin, Gillian Arrighi, Rand Hazou, Rob Pensalfini, Sue Fenty-Studham, Mark Radvan, Rob Conkie, Kris Plummer, Lisa Warrington, Kate Flaherty, Bryoni Tresize, Janys Hayes, Lisa Warrington, Teresa Izzard, Kim Durban, Veronica Kelly, Adrian Keirnander, James Davenport, Julie Robson and others. We, and the authors, appreciate the rigour and care with which peers have approached the scholarship presented here. This collection was published in final form on July 3rd 2012, the first day of the ADSA Conference 2012.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.
Resumo:
Adherence to behavioral weight loss strategies is important for weight loss success. We aimed to examine the reliability and validity of a newly developed compliance praxis-diet (COMPASS-diet) survey with participants in a 10-week dietary intervention program. During the third of five sessions, participants of the “slim-without-diet” weight loss program (n = 253) completed the COMPASS-diet survey and provided data on demographic and clinical characteristics, and general self-efficacy. Group facilitators completed the COMPASS-diet-other scale estimating participants’ likely adherence from their perspective. We calculated internal consistency, convergent validity, and predictive value for objectively measured weight loss. Mean COMPASS-diet-self score was 82.4 (SD 14.2) and COMPASS-diet-other score 80.9 (SD 13.6) (possible range 12–108), with lowest scores in the normative behavior subscale. Cronbach alpha scores of the COMPASS-diet-self and -other scale were good (0.82 and 0.78, respectively). COMPASS-diet-self scores (r = 0.31) correlated more highly with general self-efficacy compared to COMPASS-diet-other scores (r = 0.04) providing evidence for validity. In multivariable analysis adjusted for age and gender, both the COMPASS-diet-self (F = 10.8, p < 0.001, r2 = 0.23) and other (F = 5.5, p < 0.001, r2 = 0.19) scales were significantly associated with weight loss achieved at program conclusion. COMPASS-diet surveys will allow group facilitators or trainers to identify patients who need additional support for optimal weight loss.
Resumo:
In this editorial letter, we provide the readers of Information Systems Management with a background on process design before we discuss the content of the special issue proper. By introducing and describing a so-called process design compass we aim to clarify what developments in the field are taking place and how the papers in this special issue expand on our current knowledge in this domain.
Resumo:
A major concern of embedded system architects is the design for low power. We address one aspect of the problem in this paper, namely the effect of executable code compression. There are two benefits of code compression – firstly, a reduction in the memory footprint of embedded software, and secondly, potential reduction in memory bus traffic and power consumption. Since decompression has to be performed at run time it is achieved by hardware. We describe a tool called COMPASS which can evaluate a range of strategies for any given set of benchmarks and display compression ratios. Also, given an execution trace, it can compute the effect on bus toggles, and cache misses for a range of compression strategies. The tool is interactive and allows the user to vary a set of parameters, and observe their effect on performance. We describe an implementation of the tool and demonstrate its effectiveness. To the best of our knowledge this is the first tool proposed for such a purpose.
Resumo:
Without an absolute position sensor (e.g., GPS), an accurate heading estimate is necessary for proper localization of an autonomous unmanned vehicle or robot. This paper introduces direction maps (DMs), which represent the directions of only dominant surfaces of the vehicle’s environment and can be created with negligible effort. Given an environment with reoccurring surface directions (e.g., walls, buildings, parked cars), lines extracted from laser scans can be matched with a DM to provide an extremely lightweight heading estimate that is shown, through experimentation, to drastically reduce the growth of heading errors. The algorithm was tested using a Husky A200 mobile robot in a warehouse environment over traverses hundreds of metres in length. When a simple a priori DM was provided, the resulting heading estimation showed virtually no error growth.
Resumo:
Fairies and fairy tales continue to intrigue both academic and popular audiences. This article, while exploring the diverse approaches of recent scholars in this field, also raises disciplinary questions. Should the study of folklore and of the literary fairy tale be seen as separate research areas, one the preserve of the cultural historian and folklorist, the other the remit of the literary scholar? Can we even make a clear distinction in the nineteenth century between authored, literary fairy tales and orally collected supernatural folktales? If it is reductive to assume that the fairy tale can always be classified (and potentially dismissed) as children's literature, how might recent trends in Victorian studies suggest new ways of seeing and teaching the genre? Discussing the fairy tale in the context of debates over orality and authenticity, literature and science, all of these questions will be examined below.
Resumo:
Recent evidence suggests that bats can detect the geomagnetic field, but the way in which this is used by them for navigation to a home roost remains unresolved. The geomagnetic field may be used by animals both to indicate direction and to locate position. In birds, directional information appears to be derived from an interaction of the magnetic field with either the sun or the stars, with some evidence suggesting that sunset/sunrise provides the primary directional reference by which a magnetic compass is calibrated daily. We demonstrate that homing greater mouse-eared bats (Myotis myotis) calibrate a magnetic compass with sunset cues by testing their homing response after exposure to an altered magnetic field at and after sunset. Magnetic manipulation at sunset resulted in a counterclockwise shift in orientation compared with controls, consistent with sunset calibration of the magnetic field, whereas magnetic manipulation after sunset resulted in no change in orientation. Unlike in birds, however, the pattern of polarization was not necessary for the calibration. For animals that occupy ecological niches where the sunset is rarely observed, this is a surprising finding. Yet it may indicate the primacy of the sun as an absolute geographical reference not only for birds but also within other vertebrate taxa.
Resumo:
Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.
Resumo:
In a recent study, Greif et al. (2014) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed to a 90° rotated band of polarized light during dusk, would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration.
Resumo:
Brass Surveying Compass with a 6 1/2 inch diameter silvered brass dial signed E. and G.W. Blunt of New York. There is a fleur-de-lis at the north point and the outer needle ring is engraved 0-90 in four quadrants. There is an engraved central pattern, blue steel hand and brass lifter, shaped limbs and a brass dial cover. This belonged to Samuel DeVeaux Woodruff who was a Civil Engineer. It also belonged to R.D.W. Band who was also a Civil Engineer. Also, One 13 cm. brass spindle taper for the surveying compass, n.d