839 resultados para E-Commerce, Web Search Engines
Resumo:
Detecting query reformulations within a session by a Web searcher is an important area of research for designing more helpful searching systems and targeting content to particular users. Methods explored by other researchers include both qualitative (i.e., the use of human judges to manually analyze query patterns on usually small samples) and nondeterministic algorithms, typically using large amounts of training data to predict query modification during sessions. In this article, we explore three alternative methods for detection of session boundaries. All three methods are computationally straightforward and therefore easily implemented for detection of session changes. We examine 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005. We compare session analysis using (a) Internet Protocol address and cookie; (b) Internet Protocol address, cookie, and a temporal limit on intrasession interactions; and (c) Internet Protocol address, cookie, and query reformulation patterns. Overall, our analysis shows that defining sessions by query reformulation along with Internet Protocol address and cookie provides the best measure, resulting in an 82% increase in the count of sessions. Regardless of the method used, the mean session length was fewer than three queries, and the mean session duration was less than 30 min. Searchers most often modified their query by changing query terms (nearly 23% of all query modifications) rather than adding or deleting terms. Implications are that for measuring searching traffic, unique sessions may be a better indicator than the common metric of unique visitors. This research also sheds light on the more complex aspects of Web searching involving query modifications and may lead to advances in searching tools.
Resumo:
In today’s world of information-driven society, many studies are exploring usefulness and ease of use of the technology. The research into personalizing next-generation user interface is also ever increasing. A better understanding of factors that influence users’ perception of web search engine performance would contribute in achieving this. This study measures and examines how users’ perceived level of prior knowledge and experience influence their perceived level of satisfaction of using the web search engines, and how their perceived level of satisfaction affects their perceived intention to reuse the system. 50 participants from an Australian university participated in the current study, where they performed three search tasks and completed survey questionnaires. A research model was constructed to test the proposed hypotheses. Correlation and regression analyses results indicated a significant correlation between (1) users’ prior level of experience and their perceived level of satisfaction in using the web search engines, and (2) their perceived level of satisfaction in using the systems and their perceived intention to reuse the systems. A theoretical model is proposed to illustrate the causal relationships. The implications and limitations of the study are also discussed.
Resumo:
When publishing information on the web, one expects it to reach all the people that could be interested in. This is mainly achieved with general purpose indexing and search engines like Google which is the most used today. In the particular case of geographic information (GI) domain, exposing content to mainstream search engines is a complex task that needs specific actions. In many occasions it is convenient to provide a web site with a specially tailored search engine. Such is the case for on-line dictionaries (wikipedia, wordreference), stores (amazon, ebay), and generally all those holding thematic databases. Due to proliferation of these engines, A9.com proposed a standard interface called OpenSearch, used by modern web browsers to manage custom search engines. Geographic information can also benefit from the use of specific search engines. We can distinguish between two main approaches in GI retrieval information efforts: Classical OGC standardization on one hand (CSW, WFS filters), which are very complex for the mainstream user, and on the other hand the neogeographer’s approach, usually in the form of specific APIs lacking a common query interface and standard geographic formats. A draft ‘geo’ extension for OpenSearch has been proposed. It adds geographic filtering for queries and recommends a set of simple standard response geographic formats, such as KML, Atom and GeoRSS. This proposal enables standardization while keeping simplicity, thus covering a wide range of use cases, in both OGC and the neogeography paradigms. In this article we will analyze the OpenSearch geo extension in detail and its use cases, demonstrating its applicability to both the SDI and the geoweb. Open source implementations will be presented as well
Resumo:
The Web has become a worldwide repository of information which individuals, companies, and organizations utilize to solve or address various information problems. Many of these Web users utilize automated agents to gather this information for them. Some assume that this approach represents a more sophisticated method of searching. However, there is little research investigating how Web agents search for online information. In this research, we first provide a classification for information agent using stages of information gathering, gathering approaches, and agent architecture. We then examine an implementation of one of the resulting classifications in detail, investigating how agents search for information on Web search engines, including the session, query, term, duration and frequency of interactions. For this temporal study, we analyzed three data sets of queries and page views from agents interacting with the Excite and AltaVista search engines from 1997 to 2002, examining approximately 900,000 queries submitted by over 3,000 agents. Findings include: (1) agent sessions are extremely interactive, with sometimes hundreds of interactions per second (2) agent queries are comparable to human searchers, with little use of query operators, (3) Web agents are searching for a relatively limited variety of information, wherein only 18% of the terms used are unique, and (4) the duration of agent-Web search engine interaction typically spans several hours. We discuss the implications for Web information agents and search engines.
Resumo:
This paper reports results from a study exploring the multimedia search functionality of Chinese language search engines. Web searching in Chinese (Mandarin) is a growing research area and a technical challenge for popular commercial Web search engines. Few studies have been conducted on Chinese language search engines. We investigate two research questions: which Chinese language search engines provide multimedia searching, and what multimedia search functionalities are available in Chinese language Web search engines. Specifically, we examine each Web search engine's (1) features permitting Chinese language multimedia searches, (2) extent of search personalization and user control of multimedia search variables, and (3) the relationships between Web search engines and their features in the Chinese context. Key findings show that Chinese language Web search engines offer limited multimedia search functionality, and general search engines provide a wider range of features than specialized multimedia search engines. Study results have implications for Chinese Web users, Website designers and Web search engine developers. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
When a query is passed to multiple search engines, each search engine returns a ranked list of documents. Researchers have demonstrated that combining results, in the form of a "metasearch engine", produces a significant improvement in coverage and search effectiveness. This paper proposes a linear programming mathematical model for optimizing the ranked list result of a given group of Web search engines for an issued query. An application with a numerical illustration shows the advantages of the proposed method. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
We propose the development of a world wide web image search engine that crawls the web collecting information about the images it finds, computes the appropriate image decompositions and indices, and stores this extracted information for searches based on image content. Indexing and searching images need not require solving the image understanding problem. Instead, the general approach should be to provide an arsenal of image decompositions and discriminants that can be precomputed for images. At search time, users can select a weighted subset of these decompositions to be used for computing image similarity measurements. While this approach avoids the search-time-dependent problem of labeling what is important in images, it still holds several important problems that require further research in the area of query by image content. We briefly explore some of these problems as they pertain to shape.
Resumo:
Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interfaces
Resumo:
In this paper we propose a method that integrates the no- tion of understandability, as a factor of document relevance, into the evaluation of information retrieval systems for con- sumer health search. We consider the gain-discount evaluation framework (RBP, nDCG, ERR) and propose two understandability-based variants (uRBP) of rank biased precision, characterised by an estimation of understandability based on document readability and by different models of how readability influences user understanding of document content. The proposed uRBP measures are empirically contrasted to RBP by comparing system rankings obtained with each measure. The findings suggest that considering understandability along with topicality in the evaluation of in- formation retrieval systems lead to different claims about systems effectiveness than considering topicality alone.
Resumo:
An increasing amount of people seek health advice on the web using search engines; this poses challenging problems for current search technologies. In this paper we report an initial study of the effectiveness of current search engines in retrieving relevant information for diagnostic medical circumlocutory queries, i.e., queries that are issued by people seeking information about their health condition using a description of the symptoms they observes (e.g. hives all over body) rather than the medical term (e.g. urticaria). This type of queries frequently happens when people are unfamiliar with a domain or language and they are common among health information seekers attempting to self-diagnose or self-treat themselves. Our analysis reveals that current search engines are not equipped to effectively satisfy such information needs; this can have potential harmful outcomes on people’s health. Our results advocate for more research in developing information retrieval methods to support such complex information needs.
Resumo:
This study examines the efficiency of search engine advertising strategies employed by firms. The research setting is the online retailing industry, which is characterized by extensive use of Web technologies and high competition for market share and profitability. For Internet retailers, search engines are increasingly serving as an information gateway for many decision-making tasks. In particular, Search engine advertising (SEA) has opened a new marketing channel for retailers to attract new customers and improve their performance. In addition to natural (organic) search marketing strategies, search engine advertisers compete for top advertisement slots provided by search brokers such as Google and Yahoo! through keyword auctions. The rationale being that greater visibility on a search engine during a keyword search will capture customers' interest in a business and its product or service offerings. Search engines account for most online activities today. Compared with the slow growth of traditional marketing channels, online search volumes continue to grow at a steady rate. According to the Search Engine Marketing Professional Organization, spending on search engine marketing by North American firms in 2008 was estimated at $13.5 billion. Despite the significant role SEA plays in Web retailing, scholarly research on the topic is limited. Prior studies in SEA have focused on search engine auction mechanism design. In contrast, research on the business value of SEA has been limited by the lack of empirical data on search advertising practices. Recent advances in search and retail technologies have created datarich environments that enable new research opportunities at the interface of marketing and information technology. This research uses extensive data from Web retailing and Google-based search advertising and evaluates Web retailers' use of resources, search advertising techniques, and other relevant factors that contribute to business performance across different metrics. The methods used include Data Envelopment Analysis (DEA), data mining, and multivariate statistics. This research contributes to empirical research by analyzing several Web retail firms in different industry sectors and product categories. One of the key findings is that the dynamics of sponsored search advertising vary between multi-channel and Web-only retailers. While the key performance metrics for multi-channel retailers include measures such as online sales, conversion rate (CR), c1ick-through-rate (CTR), and impressions, the key performance metrics for Web-only retailers focus on organic and sponsored ad ranks. These results provide a useful contribution to our organizational level understanding of search engine advertising strategies, both for multi-channel and Web-only retailers. These results also contribute to current knowledge in technology-driven marketing strategies and provide managers with a better understanding of sponsored search advertising and its impact on various performance metrics in Web retailing.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^