995 resultados para Dynamic traffic
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
This paper is the result of real-scale physical modeling study designed to simulate the load-deformation characteristics of railroad foundation systems that include the railroad ties, the ballast, and the sub-base layers of a railroad embankment. The study presents comparisons of the application of dynamic loads of 100kN on the rails, and the resulting deformations during a 500,000 cycle testing period for three rail support systems; wood, concrete and steel. The results show that the deformation curve has an exponential shape, with the larger portion of the deformation occurring during the first 50,000 load cycles followed by a tendency to stabilize between 100,000 to 500,000 cycles. These results indicate that the critical phase of deformations of a new railroad is within the first 50,000 cycles of loading, and after that, it slowly attenuates as it approaches a stable value. The paper also presents empirically derived formulations for the estimation of the deformations of the rail supports as a result of rail traffic.
Resumo:
The emergence of wavelength-division multiplexing (WDM) technology provides the capability for increasing the bandwidth of synchronous optical network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add–drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom the traffic, and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently. Moreover, the traffic pattern of the optical network changes from time to time. How to develop dynamic reconfiguration algorithms for traffic grooming is an important issue. In this paper, two cases (best fit and full fit) for handling reconfigurable SONET over WDM networks are proposed. For each approach, an integer linear programming model and heuristic algorithms (TS-1 and TS-2, based on the tabu search method) are given. The results demonstrate that the TS-1 algorithm can yield better solutions but has a greater running time than the greedy algorithm for the best fit case. For the full fit case, the tabu search heuristic yields competitive results compared with an earlier simulated annealing based method and it is more stable for the dynamic case.
Resumo:
Traffic grooming in optical WDM mesh networks is a two-layer routing problem to effectively pack low-rate connections onto high-rate lightpaths, which, in turn, are established on wavelength links. In this work, we employ the rerouting approach to improve the network throughput under the dynamic traffic model. We propose two rerouting schemes, rerouting at lightpath level (RRAL) and rerouting at connection level (RRAC). A qualitative comparison is made between RRAL and RRAC. We also propose the critical-wavelength-avoiding one-lightpath-limited (CWA-1L) and critical-lightpath-avoiding one-connection-limited (CLA-1C) rerouting heuristics, which are based on the two rerouting schemes respectively. Simulation results show that rerouting reduces the connection blocking probability significantly.
Resumo:
The emergence of Wavelength Division Multiplexing (WDM) technology provides the capability for increasing the bandwidth of Synchronous Optical Network (SONET) rings by grooming low-speed traffic streams onto different high-speed wavelength channels. Since the cost of SONET add-drop multiplexers (SADM) at each node dominates the total cost of these networks, how to assign the wavelength, groom in the traffic and bypass the traffic through the intermediate nodes has received a lot of attention from researchers recently.
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.
Resumo:
Persistent daily congestion has been increasing in recent years, particularly along major corridors during selected periods in the mornings and evenings. On certain segments, these roadways are often at or near capacity. However, a conventional Predefined control strategy did not fit the demands that changed over time, making it necessary to implement the various dynamical lane management strategies discussed in this thesis. Those strategies include hard shoulder running, reversible HOV lanes, dynamic tolls and variable speed limit. A mesoscopic agent-based DTA model is used to simulate different strategies and scenarios. From the analyses, all strategies aim to mitigate congestion in terms of the average speed and average density. The largest improvement can be found in hard shoulder running and reversible HOV lanes while the other two provide more stable traffic. In terms of average speed and travel time, hard shoulder running is the most congested strategy for I-270 to help relieve the traffic pressure.
Resumo:
Sparse traffic grooming is a practical problem to be addressed in heterogeneous multi-vendor optical WDM networks where only some of the optical cross-connects (OXCs) have grooming capabilities. Such a network is called as a sparse grooming network. The sparse grooming problem under dynamic traffic in optical WDM mesh networks is a relatively unexplored problem. In this work, we propose the maximize-lightpath-sharing multi-hop (MLS-MH) grooming algorithm to support dynamic traffic grooming in sparse grooming networks. We also present an analytical model to evaluate the blocking performance of the MLS-MH algorithm. Simulation results show that MLSMH outperforms an existing grooming algorithm, the shortest path single-hop (SPSH) algorithm. The numerical results from analysis show that it matches closely with the simulation. The effect of the number of grooming nodes in the network on the blocking performance is also analyzed.
Resumo:
This dissertation aims to improve the performance of existing assignment-based dynamic origin-destination (O-D) matrix estimation models to successfully apply Intelligent Transportation Systems (ITS) strategies for the purposes of traffic congestion relief and dynamic traffic assignment (DTA) in transportation network modeling. The methodology framework has two advantages over the existing assignment-based dynamic O-D matrix estimation models. First, it combines an initial O-D estimation model into the estimation process to provide a high confidence level of initial input for the dynamic O-D estimation model, which has the potential to improve the final estimation results and reduce the associated computation time. Second, the proposed methodology framework can automatically convert traffic volume deviation to traffic density deviation in the objective function under congested traffic conditions. Traffic density is a better indicator for traffic demand than traffic volume under congested traffic condition, thus the conversion can contribute to improving the estimation performance. The proposed method indicates a better performance than a typical assignment-based estimation model (Zhou et al., 2003) in several case studies. In the case study for I-95 in Miami-Dade County, Florida, the proposed method produces a good result in seven iterations, with a root mean square percentage error (RMSPE) of 0.010 for traffic volume and a RMSPE of 0.283 for speed. In contrast, Zhou's model requires 50 iterations to obtain a RMSPE of 0.023 for volume and a RMSPE of 0.285 for speed. In the case study for Jacksonville, Florida, the proposed method reaches a convergent solution in 16 iterations with a RMSPE of 0.045 for volume and a RMSPE of 0.110 for speed, while Zhou's model needs 10 iterations to obtain the best solution, with a RMSPE of 0.168 for volume and a RMSPE of 0.179 for speed. The successful application of the proposed methodology framework to real road networks demonstrates its ability to provide results both with satisfactory accuracy and within a reasonable time, thus establishing its potential usefulness to support dynamic traffic assignment modeling, ITS systems, and other strategies.
Resumo:
This project develops a smartphone-based prototype system that supplements the 511 system to improve its dynamic traffic routing service to state highway users under non-recurrent congestion. This system will save considerable time to provide crucial traffic information and en-route assistance to travelers for them to avoid being trapped in traffic congestion due to accidents, work zones, hazards, or special events. It also creates a feedback loop between travelers and responsible agencies that enable the state to effectively collect, fuse, and analyze crowd-sourced data for next-gen transportation planning and management. This project can result in substantial economic savings (e.g. less traffic congestion, reduced fuel wastage and emissions) and safety benefits for the freight industry and society due to better dissemination of real-time traffic information by highway users. Such benefits will increase significantly in future with the expected increase in freight traffic on the network. The proposed system also has the flexibility to be integrated with various transportation management modules to assist state agencies to improve transportation services and daily operations.
Resumo:
Le projet de recherche porte sur l'étude des problèmes de conception et de planification d'un réseau optique de longue distance, aussi appelé réseau de coeur (OWAN-Optical Wide Area Network en anglais). Il s'agit d'un réseau qui transporte des flots agrégés en mode commutation de circuits. Un réseau OWAN relie différents sites à l'aide de fibres optiques connectées par des commutateurs/routeurs optiques et/ou électriques. Un réseau OWAN est maillé à l'échelle d'un pays ou d’un continent et permet le transit des données à très haut débit. Dans une première partie du projet de thèse, nous nous intéressons au problème de conception de réseaux optiques agiles. Le problème d'agilité est motivé par la croissance de la demande en bande passante et par la nature dynamique du trafic. Les équipements déployés par les opérateurs de réseaux doivent disposer d'outils de configuration plus performants et plus flexibles pour gérer au mieux la complexité des connexions entre les clients et tenir compte de la nature évolutive du trafic. Souvent, le problème de conception d'un réseau consiste à prévoir la bande passante nécessaire pour écouler un trafic donné. Ici, nous cherchons en plus à choisir la meilleure configuration nodale ayant un niveau d'agilité capable de garantir une affectation optimale des ressources du réseau. Nous étudierons également deux autres types de problèmes auxquels un opérateur de réseau est confronté. Le premier problème est l'affectation de ressources du réseau. Une fois que l'architecture du réseau en termes d'équipements est choisie, la question qui reste est de savoir : comment dimensionner et optimiser cette architecture pour qu'elle rencontre le meilleur niveau possible d'agilité pour satisfaire toute la demande. La définition de la topologie de routage est un problème d'optimisation complexe. Elle consiste à définir un ensemble de chemins optiques logiques, choisir les routes physiques suivies par ces derniers, ainsi que les longueurs d'onde qu'ils utilisent, de manière à optimiser la qualité de la solution obtenue par rapport à un ensemble de métriques pour mesurer la performance du réseau. De plus, nous devons définir la meilleure stratégie de dimensionnement du réseau de façon à ce qu'elle soit adaptée à la nature dynamique du trafic. Le second problème est celui d'optimiser les coûts d'investissement en capital(CAPEX) et d'opération (OPEX) de l'architecture de transport proposée. Dans le cas du type d'architecture de dimensionnement considérée dans cette thèse, le CAPEX inclut les coûts de routage, d'installation et de mise en service de tous les équipements de type réseau installés aux extrémités des connexions et dans les noeuds intermédiaires. Les coûts d'opération OPEX correspondent à tous les frais liés à l'exploitation du réseau de transport. Étant donné la nature symétrique et le nombre exponentiel de variables dans la plupart des formulations mathématiques développées pour ces types de problèmes, nous avons particulièrement exploré des approches de résolution de type génération de colonnes et algorithme glouton qui s'adaptent bien à la résolution des grands problèmes d'optimisation. Une étude comparative de plusieurs stratégies d'allocation de ressources et d'algorithmes de résolution, sur différents jeux de données et de réseaux de transport de type OWAN démontre que le meilleur coût réseau est obtenu dans deux cas : une stratégie de dimensionnement anticipative combinée avec une méthode de résolution de type génération de colonnes dans les cas où nous autorisons/interdisons le dérangement des connexions déjà établies. Aussi, une bonne répartition de l'utilisation des ressources du réseau est observée avec les scénarios utilisant une stratégie de dimensionnement myope combinée à une approche d'allocation de ressources avec une résolution utilisant les techniques de génération de colonnes. Les résultats obtenus à l'issue de ces travaux ont également démontré que des gains considérables sont possibles pour les coûts d'investissement en capital et d'opération. En effet, une répartition intelligente et hétérogène de ressources d’un réseau sur l'ensemble des noeuds permet de réaliser une réduction substantielle des coûts du réseau par rapport à une solution d'allocation de ressources classique qui adopte une architecture homogène utilisant la même configuration nodale dans tous les noeuds. En effet, nous avons démontré qu'il est possible de réduire le nombre de commutateurs photoniques tout en satisfaisant la demande de trafic et en gardant le coût global d'allocation de ressources de réseau inchangé par rapport à l'architecture classique. Cela implique une réduction substantielle des coûts CAPEX et OPEX. Dans nos expériences de calcul, les résultats démontrent que la réduction de coûts peut atteindre jusqu'à 65% dans certaines jeux de données et de réseau.
Resumo:
Avec les nouvelles technologies des réseaux optiques, une quantité de données de plus en plus grande peut être transportée par une seule longueur d'onde. Cette quantité peut atteindre jusqu’à 40 gigabits par seconde (Gbps). Les flots de données individuels quant à eux demandent beaucoup moins de bande passante. Le groupage de trafic est une technique qui permet l'utilisation efficace de la bande passante offerte par une longueur d'onde. Elle consiste à assembler plusieurs flots de données de bas débit en une seule entité de données qui peut être transporté sur une longueur d'onde. La technique demultiplexage en longueurs d'onde (Wavelength Division Multiplexing WDM) permet de transporter plusieurs longueurs d'onde sur une même fibre. L'utilisation des deux techniques : WDM et groupage de trafic, permet de transporter une quantité de données de l'ordre de terabits par seconde (Tbps) sur une même fibre optique. La protection du trafic dans les réseaux optiques devient alors une opération très vitale pour ces réseaux, puisqu'une seule panne peut perturber des milliers d'utilisateurs et engendre des pertes importantes jusqu'à plusieurs millions de dollars à l'opérateur et aux utilisateurs du réseau. La technique de protection consiste à réserver une capacité supplémentaire pour acheminer le trafic en cas de panne dans le réseau. Cette thèse porte sur l'étude des techniques de groupage et de protection du trafic en utilisant les p-cycles dans les réseaux optiques dans un contexte de trafic dynamique. La majorité des travaux existants considère un trafic statique où l'état du réseau ainsi que le trafic sont donnés au début et ne changent pas. En plus, la majorité de ces travaux utilise des heuristiques ou des méthodes ayant de la difficulté à résoudre des instances de grande taille. Dans le contexte de trafic dynamique, deux difficultés majeures s'ajoutent aux problèmes étudiés, à cause du changement continuel du trafic dans le réseau. La première est due au fait que la solution proposée à la période précédente, même si elle est optimisée, n'est plus nécessairement optimisée ou optimale pour la période courante, une nouvelle optimisation de la solution au problème est alors nécessaire. La deuxième difficulté est due au fait que la résolution du problème pour une période donnée est différente de sa résolution pour la période initiale à cause des connexions en cours dans le réseau qui ne doivent pas être trop dérangées à chaque période de temps. L'étude faite sur la technique de groupage de trafic dans un contexte de trafic dynamique consiste à proposer différents scénarios pour composer avec ce type de trafic, avec comme objectif la maximisation de la bande passante des connexions acceptées à chaque période de temps. Des formulations mathématiques des différents scénarios considérés pour le problème de groupage sont proposées. Les travaux que nous avons réalisés sur le problème de la protection considèrent deux types de p-cycles, ceux protégeant les liens (p-cycles de base) et les FIPP p-cycles (p-cycles protégeant les chemins). Ces travaux ont consisté d’abord en la proposition de différents scénarios pour gérer les p-cycles de protection dans un contexte de trafic dynamique. Ensuite, une étude sur la stabilité des p-cycles dans un contexte de trafic dynamique a été faite. Des formulations de différents scénarios ont été proposées et les méthodes de résolution utilisées permettent d’aborder des problèmes de plus grande taille que ceux présentés dans la littérature. Nous nous appuyons sur la méthode de génération de colonnes pour énumérer implicitement les cycles les plus prometteurs. Dans l'étude des p-cycles protégeant les chemins ou FIPP p-cycles, nous avons proposé des formulations pour le problème maître et le problème auxiliaire. Nous avons utilisé une méthode de décomposition hiérarchique du problème qui nous permet d'obtenir de meilleurs résultats dans un temps raisonnable. Comme pour les p-cycles de base, nous avons étudié la stabilité des FIPP p-cycles dans un contexte de trafic dynamique. Les travaux montrent que dépendamment du critère d'optimisation, les p-cycles de base (protégeant les liens) et les FIPP p-cycles (protégeant les chemins) peuvent être très stables.
Resumo:
Heterogeneous waveband switching (HeteroWBS) in WDM networks reduces the network operational costs. We propose an autonomous clustering-based HeteroWBS architecture to support the design of efficient HeteroWBS algorithms under dynamic traffic requests in such a network.
Resumo:
We investigate the problem of waveband switching (WBS) in a wavelength-division multiplexing (WDM) mesh network with dynamic traffic requests. To solve the WBS problem in a homogeneous dynamic WBS network, where every node is a multi-granular optical cross-connect (MG-OXC), we construct an auxiliary graph. Based on the auxiliary graph, we develop two heuristic on-line WBS algorithms with different grouping policies, namely the wavelength-first WBS algorithm based on the auxiliary graph (WFAUG) and the waveband-first WBS algorithm based on the auxiliary graph (BFAUG). Our results show that the WFAUG algorithm outperforms the BFAUG algorithm.