965 resultados para Dynamic state
Resumo:
To select each node by devices and by contexts in urban computing, users have to put their plan information and their requests into a computing environment (ex. PDA, Smart Devices, Laptops, etc.) in advance and they will try to keep the optimized states between users and the computing environment. However, because of bad contexts, users may get the wrong decision, so, one of the users’ demands may be requesting the good server which has higher security. To take this issue, we define the structure of Dynamic State Information (DSI) which takes a process about security including the relevant factors in sending/receiving contexts, which select the best during user movement with server quality and security states from DSI. Finally, whenever some information changes, users and devices get the notices including security factors, then an automatic reaction can be possible; therefore all users can safely use all devices in urban computing.
Resumo:
In the early vertebrate embryo, cardiac progenitor/precursor cells (CPs) give rise to cardiac structures. Better understanding their biological character is critical to understand the heart development and to apply CPs for the clinical arena. However, our knowledge remains incomplete. With the use of single-cell expression profiling, we have now revealed rapid and dynamic changes in gene expression profiles of the embryonic CPs during the early phase after their segregation from the cardiac mesoderm. Progressively, the nascent mesodermal gene Mesp1 terminated, and Nkx2-5+/Tbx5+ population rapidly replaced the Tbx5low+ population as the expression of the cardiac genes Tbx5 and Nkx2-5 increased. At the Early Headfold stage, Tbx5-expressing CPs gradually showed a unique molecular signature with signs of cardiomyocyte differentiation. Lineage-tracing revealed a developmentally distinct characteristic of this population. They underwent progressive differentiation only towards the cardiomyocyte lineage corresponding to the first heart field rather than being maintained as a progenitor pool. More importantly, Tbx5 likely plays an important role in a transcriptional network to regulate the distinct character of the FHF via a positive feedback loop to activate the robust expression of Tbx5 in CPs. These data expands our knowledge on the behavior of CPs during the early phase of cardiac development, subsequently providing a platform for further study.
Resumo:
In this study, a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid is presented. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The present research is a part of a study on the unsteady dynamics of an organic Rankine cycle power plant and it will be a part of a dynamic process model. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen was to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties has been used, because most of the calculation time is spent in calculating the fluid properties. The boiler was divided into elements. The values of the thermodynamic properties and mass flows were calculated in the nodes that connect the elements. Dynamic behaviour was limited to the process fluid and tube wall, and the heat source was regarded as to be steady. The elements that connect the preheater to thevaporiser and the vaporiser to the superheater were treated in a special way that takes into account a flexible change from one part to the other. The model consists of the calculation of the steady state initial distribution of the variables in the nodes, and the calculation of these nodal values in a dynamic state. The initial state of the boiler was received from a steady process model that isnot a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source and the process fluid. A brief examination of the oscillation around a steady state, the so-called Ledinegg instability, was done. This examination showed that the pressure drop in the boiler is a third degree polynomial of the mass flow rate, and the stability criterion is a second degree polynomial of the enthalpy change in the preheater. The numerical examination showed that oscillations did not exist in the example case. The dynamic boiler model was analysed for linear and step changes of the entering fluid temperatures and flow rates.The problem for verifying the correctness of the achieved results was that there was no possibility o compare them with measurements. This is why the only way was to determine whether the obtained results were intuitively reasonable and the results changed logically when the boundary conditions were changed. The numerical stability was checked in a test run in which there was no change in input values. The differences compared with the initial values were so small that the effects of numerical oscillations were negligible. The heat source side tests showed that the model gives results that are logical in the directions of the changes, and the order of magnitude of the timescale of changes is also as expected. The results of the tests on the process fluid side showed that the model gives reasonable results both on the temperature changes that cause small alterations in the process state and on mass flow rate changes causing very great alterations. The test runs showed that the dynamic model has no problems in calculating cases in which temperature of the entering heat source suddenly goes below that of the tube wall or the process fluid.
Resumo:
Our surrounding landscape is in a constantly dynamic state, but recently the rate of changes and their effects on the environment have considerably increased. In terms of the impact on nature, this development has not been entirely positive, but has rather caused a decline in valuable species, habitats, and general biodiversity. Regardless of recognizing the problem and its high importance, plans and actions of how to stop the detrimental development are largely lacking. This partly originates from a lack of genuine will, but is also due to difficulties in detecting many valuable landscape components and their consequent neglect. To support knowledge extraction, various digital environmental data sources may be of substantial help, but only if all the relevant background factors are known and the data is processed in a suitable way. This dissertation concentrates on detecting ecologically valuable landscape components by using geospatial data sources, and applies this knowledge to support spatial planning and management activities. In other words, the focus is on observing regionally valuable species, habitats, and biotopes with GIS and remote sensing data, using suitable methods for their analysis. Primary emphasis is given to the hemiboreal vegetation zone and the drastic decline in its semi-natural grasslands, which were created by a long trajectory of traditional grazing and management activities. However, the applied perspective is largely methodological, and allows for the application of the obtained results in various contexts. Models based on statistical dependencies and correlations of multiple variables, which are able to extract desired properties from a large mass of initial data, are emphasized in the dissertation. In addition, the papers included combine several data sets from different sources and dates together, with the aim of detecting a wider range of environmental characteristics, as well as pointing out their temporal dynamics. The results of the dissertation emphasise the multidimensionality and dynamics of landscapes, which need to be understood in order to be able to recognise their ecologically valuable components. This not only requires knowledge about the emergence of these components and an understanding of the used data, but also the need to focus the observations on minute details that are able to indicate the existence of fragmented and partly overlapping landscape targets. In addition, this pinpoints the fact that most of the existing classifications are too generalised as such to provide all the required details, but they can be utilized at various steps along a longer processing chain. The dissertation also emphases the importance of landscape history as an important factor, which both creates and preserves ecological values, and which sets an essential standpoint for understanding the present landscape characteristics. The obtained results are significant both in terms of preserving semi-natural grasslands, as well as general methodological development, giving support to science-based framework in order to evaluate ecological values and guide spatial planning.
Resumo:
The IWA Anaerobic Digestion Modelling Task Group was established in 1997 at the 8th World Congress on,Anaerobic Digestion (Sendai, Japan) with the goal of developing a generalised anaerobic digestion model. The structured model includes multiple steps describing biochemical as well as physicochemical processes. The biochemical steps include disintegration from homogeneous particulates to carbohydrates, proteins and lipids; extracellular hydrolysis of these particulate substrates to sugars, amino acids, and long chain fatty acids (LCFA), respectively; acidogenesis from sugars and amino acids to volatile fatty acids (VFAs) and hydrogen; acetogenesis of LCFA and VFAs to acetate; and separate methanogenesis steps from acetate and hydrogen/CO2. The physico-chemical equations describe ion association and dissociation, and gas-liquid transfer. Implemented as a differential and algebraic equation (DAE) set, there are 26 dynamic state concentration variables, and 8 implicit algebraic variables per reactor vessel or element. Implemented as differential equations (DE) only, there are 32 dynamic concentration state variables.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Com este trabalho mostra-se a importância da utilização integrada de modelos numéricos e de resultados da observação do comportamento dinâmico de barragens com vista ao controlo da segurança de sistemas barragem-fundação-albufeira. Neste trabalho utilizou-se o MATLAB para desenvolver um programa de elementos finitos 3D (DySSA 1.0, “Dynamic State Space Analysis”) para análise do comportamento dinâmico de sistemas barragem-fundação-albufeira considerando uma formulação em deslocamentos com a albufeira discretizada em elementos finitos com módulo de distorção nulo. Utiliza-se uma formulação no espaço de estados o que permite considerar amortecimento não proporcional à massa e à rigidez e conduz a modos de vibração complexos. Apresentam-se os fundamentos do método dos elementos finitos na perspetiva da sua implementação computacional para análise dinâmica de estruturas, e apresenta-se sumariamente o programa DySSA 1.0, o qual permite a análise estática e dinâmica de estruturas utilizando elementos finitos tridimensionais isoparamétricos do segundo grau (tipo cubo com 20 pontos nodais), e correspondentes elementos de junta (com 16 pontos nodais, 8 por cada face). O programa foi testado com base na análise dinâmica de uma parede em consola submetida à pressão hidrodinâmica. Os resultados numéricos foram comparados com soluções analíticas e com resultados experimentais obtidos no laboratório de estruturas do ISEL. Descrevem-se os fundamentos da análise dinâmica de estruturas no domínio do tempo, e referem-se os princípios em que se baseiam as metodologias de identificação modal no domínio da frequência. Analisa-se o comportamento dinâmico da barragem do Cabril em termos de frequências naturais e configurações modais, utilizando um modelo 3D representativo do sistema. Os resultados deste modelo numérico são comparados com resultados experimentais obtidos com base no sistema de monitorização dinâmica em contínuo, que foi instalado pelo LNEC em 2008.
Resumo:
Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
Le système hématopoïétique est un tissu en constant renouvellement et les cellules souches hématopoïétiques (CSHs) sont indispensables pour soutenir la production des cellules matures du sang. Deux fonctions définissent les CSHs; la propriété d’auto-renouvellement, soit la capacité de préserver l’identité cellulaire suivant une division, et la multipotence, le potentiel de différenciation permettant de générer toutes les lignées hématopoïétiques. Chez l’adulte, la majorité des CSHs sont quiescentes et l’altération de cet état corrèle avec une diminution du potentiel de reconstitution des CSHs, suggérant que la quiescence protège les fonctions des CSHs. La quiescence est un état réversible et dynamique et les réseaux génétiques le contrôlant restent peu connus. Un nombre croissant d’évidences suggère que si à l’état d’homéostasie il y a une certaine redondance entre les gènes impliqués dans ces réseaux de contrôle, leurs rôles spécifiques sont révélés en situation de stress. La famille des bHLHs (basic helix-loop-helix) inclue différentes classes des protéines dont ceux qui sont tissu-spécifiques comme SCL, et les protéines E, comme E12/E47 et HEB. Certains bHLHs sont proposés êtres important pour la fonction des cellules souches, mais cela ne fait pas l’unanimité, car selon le contexte cellulaire, il y a redondance entre ces facteurs. La question reste donc entière, y a-t-il un rôle redondant entre les bHLHs d’une même classe pour la fonction à long-terme des CSHs? Les travaux présentés dans cette thèse visaient dans un premier temps à explorer le lien encore mal compris entre la quiescence et la fonction des CSHs en mesurant leurs facultés suite à un stress prolifératif intense et dans un deuxième temps, investiguer l’importance et la spécificité de trois gènes pour la fonction des CSHs adultes, soit Scl/Tal1, E2a/Tcf3 et Heb/Tcf12. Pour répondre à ces questions, une approche cellulaire (stress prolifératif) a été combinée avec une approche génétique (invalidation génique). Plus précisément, la résistance des CSHs au stress prolifératif a été étudiée en utilisant deux tests fonctionnels quantitatifs optimisés, soit un traitement basé sur le 5-fluorouracil, une drogue de chimiothérapie, et la transplantation sérielle en nombre limite. Dans la mesure où la fonction d’un réseau génique ne peut être révélée que par une perturbation intrinsèque, trois modèles de souris, i.e. Scl+/-, E2a+/- et Heb+/- ont été utilisés. Ceci a permis de révéler que l’adaptation des CSHs au stress prolifératif et le retour à l’équilibre est strictement contrôlé par les niveaux de Scl, lesquels règlent le métabolisme cellulaire des CSHs en maintenant l’expression de gènes ribosomaux à un niveau basal. D’autre part, bien que les composantes du réseau puissent paraître redondants à l’équilibre, mes travaux montrent qu’en situation de stress prolifératif, les niveaux de Heb restreignent la prolifération excessive des CSHs en induisant la sénescence et que cette fonction ne peut pas être compensée par E2a. En conclusion, les résultats présentés dans cette thèse montrent que les CSHs peuvent tolérer un stress prolifératif intense ainsi que des dommages à l’ADN non-réparés, tout en maintenant leur capacité de reconstituer l’hématopoïèse à long-terme. Cela implique cependant que leur métabolisme revienne au niveau de base, soit celui trouvé à l’état d’homéostasie. Par contre, avec l’augmentation du nombre de division cellulaire les CSHs atteignent éventuellement une limite d’expansion et entrent en sénescence.
Resumo:
Les avancées techniques et méthodologiques de la neuroscience ont permis de caractériser le sommeil comme un état actif et dynamique où des événements neuronaux cohésifs organisent les fonctions cérébrales. Les fuseaux de sommeil et les ondes lentes sont les marqueurs électroencéphalographiques de ces événements, et la mesure de leurs paramètres reflète et nuance les interactions neuronales à l’oeuvre pendant le sommeil lent. Considérant leur implication dans les fonctions hypniques et cognitives, les événements du sommeil lent sont particulièrement pertinents à l’étude du vieillissement, où l’intégrité de ces fonctions est mise au défi. Le vieillissement normal s’accompagne non seulement de réductions importantes des paramètres composant les événements du sommeil lent, mais aussi de modifications précises de l’intégrité anatomique et fonctionnelle du cerveau. Récemment, les études ont souligné la régulation locale des événements du sommeil lent, dont l’évolution avec l’âge demeure toutefois peu explorée. Le présent ouvrage se propose de documenter les liens unissant la neurophysiologie du sommeil, le vieillissement normal et l’activité régionale du cerveau par l’évaluation topographique et hémodynamique des événements du sommeil lent au cours du vieillissement. Dans une première étude, la densité, la durée, l’amplitude et la fréquence des fuseaux de sommeil ont été évaluées chez trois groupes d’âge au moyen de l’analyse topographique et paramétrique de l’électroencéphalogramme. Dans une seconde étude, les variations hémodynamiques associées à l’occurrence et modulées par l’amplitude des ondes lentes ont été évaluées chez deux groupes d’âge au moyen de l’électroencéphalographie combinée à l’imagerie par résonance magnétique fonctionnelle. Globalement, les résultats obtenus ont indiqué : 1) une dichotomie des aires corticales antérieures et postérieures quant aux effets d’âge sur les paramètres des fuseaux de sommeil; 2) des variations de la réponse hémodynamique associées aux ondes lentes dans une diversité de régions corticales et sous-corticales chez les personnes âgées. Ces résultats suggèrent la réorganisation fonctionnelle de l’activité neuronale en sommeil lent à travers l’âge adulte, soulignent l’utilité et la sensibilité des événements du sommeil lent comme marqueurs de vieillissement cérébral, et encouragent la recherche sur l’évolution des mécanismes de plasticité synaptique, de récupération cellulaire et de consolidation du sommeil avec l’âge.