986 resultados para Dynamic factor
Resumo:
National inflation rates reflect domestic and international (regional and global) influences. The relative importance of these components remains a controversial empirical issue. We extend the literature on inflation co-movement by utilising a dynamic factor model with stochastic volatility to account for shifts in the variance of inflation and endogenously determined regional groupings. We find that most of inflation variability is explained by the country specific disturbance term. Nevertheless, the contribution of the global component in explaining industrialised countries’ inflation rates has increased over time.
Resumo:
In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.
Resumo:
The main objective of this paper is the development and application of multivariate time series models for forecasting aggregated wind power production in a country or region. Nowadays, in Spain, Denmark or Germany there is an increasing penetration of this kind of renewable energy, somehow to reduce energy dependence on the exterior, but always linked with the increaseand uncertainty affecting the prices of fossil fuels. The disposal of accurate predictions of wind power generation is a crucial task both for the System Operator as well as for all the agents of the Market. However, the vast majority of works rarely onsider forecasting horizons longer than 48 hours, although they are of interest for the system planning and operation. In this paper we use Dynamic Factor Analysis, adapting and modifying it conveniently, to reach our aim: the computation of accurate forecasts for the aggregated wind power production in a country for a forecasting horizon as long as possible, particularly up to 60 days (2 months). We illustrate this methodology and the results obtained for real data in the leading country in wind power production: Denmark
Resumo:
Variables measured during static and dynamic pupillometry were factor-analyzed. Following factors were obtained regardless whether investigations were carried out in normals or in psychiatric patients: A static factor, a dynamic factor, a stimulus-specific factor and a restitution-dependent factor. Evaluation of reliability in normals demonstrated a high reliability for the static variables of pupillometry.
Resumo:
We use a dynamic factor model to provide a semi-structural representation for 101 quarterly US macroeconomic series. We find that (i) the US economy is well described by a number of structural shocks between two and six. Focusing on the four-shock specification, we identify, using sign restrictions, two non-policy shocks, demand and supply, and two policy shocks, monetary and fiscal. We obtain the following results. (ii) Both supply and demand shocks are important sources of fluctuations; supply prevails for GDP, while demand prevails for employment and inflation. (ii) Policy matters, Both monetary and fiscal policy shocks have sizeable effects on output and prices, with little evidence of crowding out; both monetary and fiscal authorities implement important systematic countercyclical policies reacting to demand shocks. (iii) Negative demand shocks have a large long-run positive effect on productivity, consistently with the Schumpeterian "cleansing" view of recessions.
Resumo:
The study of forest re activity, in its several aspects, is essencial to understand the phenomenon and to prevent environmental public catastrophes. In this context the analysis of monthly number of res along several years is one aspect to have into account in order to better comprehend this tematic. The goal of this work is to analyze the monthly number of forest res in the neighboring districts of Aveiro and Coimbra, Portugal, through dynamic factor models for bivariate count series. We use a bayesian approach, through MCMC methods, to estimate the model parameters as well as to estimate the common latent factor to both series.
Resumo:
Preliminary version
Resumo:
Publicado em "Educação, territórios e desenvolvimento humano: atas do I Seminário Internacional, Vol. I – conferências e intervenções". ISBN 978-989-96186-9-5
Resumo:
This paper develops a structured dynamic factor model for the spreads between London Interbank Offered Rate (LIBOR) and overnight index swap (OIS) rates for a panel of banks. Our model involves latent factors which reflect liquidity and credit risk. Our empirical results show that surges in the short term LIBOR-OIS spreads during the 2007-2009 fi nancial crisis were largely driven by liquidity risk. However, credit risk played a more signifi cant role in the longer term (twelve-month) LIBOR-OIS spread. The liquidity risk factors are more volatile than the credit risk factor. Most of the familiar events in the financial crisis are linked more to movements in liquidity risk than credit risk.
Resumo:
We study the effects of government spending by using a structural, large dimensional, dynamic factor model. We find that the government spending shock is non-fundamental for the variables commonly used in the structural VAR literature, so that its impulse response functions cannot be consistently estimated by means of a VAR. Government spending raises both consumption and investment, with no evidence of crowding out. The impact multiplier is 1.7 and the long run multiplier is 0.6.
Resumo:
This paper analyses the financial impact of the enlargement of the European Union (EU) to include 10 new Central and Eastern European Nations (CEEN) on firms’ business and financial structures. To this end, we employ quantitative analytic techniques and financial ratios. In this context, we hope to discover whether firms in the new EU member States tend to converge with business in the Europe of the 15 in terms of the structure of firms’ financial statements. We examine the extent to which the increasing integration of the former may foster the convergence of productive structures. The methodology followed consists of an analysis of the evolution of 12 financial ratios in a sample of firms obtained from the AMADEUS data base. To that end, we perform a Dynamic Factor Analysis that identifies the determining factors of the joint evolution of deviations in the financial ratios with respect to the average value of firms in the EU-15. This analysis allows us to analyse the convergence in each of the CEEN nations with respect to the EU-15.
Resumo:
This paper adopts dynamic factor models with macro-finance predictors to test the intertemporal risk-return relation for 13 European stock markets. We identify country specific, euro area, and global macro-finance factors to determine the conditional risk and return. Empirically, the risk- return trade-off is generally negative. However, a Markov switching model documents that there is time-variation in this trade-off that is linked to the state of the economy. Keywords: Risk-return trade-off; Dynamic factor model; Macro-finance predictors; European stock markets; Markov switching model JEL Classifications: C22; G11; G12; G17
Resumo:
Este trabalho visa analisar a dinâmica das expectativas de inflação em função das condições macroeconômicas. Para tal, extraímos as curvas de inflação implícita na curva de títulos públicos pré-fixados e estimamos um modelo de fatores dinâmicos para sua estrutura a termo. Os fatores do modelo correspondem ao nível, inclinação e curvatura da estrutura a termo, que variam ao longo do tempo conforme os movimentos no câmbio, na inflação, no índice de commodities e no risco Brasil implícito no CDS. Após um choque de um desvio padrão no câmbio ou na inflação, a curva de inflação implícita se desloca positivamente, especialmente no curto prazo e no longo prazo. Um choque no índice de commodities também desloca a curva de inflação implícita positivamente, afetando especialmente a parte curta da curva. Em contraste, um choque no risco Brasil desloca a curva de inflação implícita paralelamente para baixo.
Resumo:
Este trabalho analisa a importância dos fatores comuns na evolução recente dos preços dos metais no período entre 1995 e 2013. Para isso, estimam-se modelos cointegrados de VAR e também um modelo de fator dinâmico bayesiano. Dado o efeito da financeirização das commodities, DFM pode capturar efeitos dinâmicos comuns a todas as commodities. Além disso, os dados em painel são aplicados para usar toda a heterogeneidade entre as commodities durante o período de análise. Nossos resultados mostram que a taxa de juros, taxa efetiva do dólar americano e também os dados de consumo têm efeito permanente nos preços das commodities. Observa-se ainda a existência de um fator dinâmico comum significativo para a maioria dos preços das commodities metálicas, que tornou-se recentemente mais importante na evolução dos preços das commodities.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.