944 resultados para Dynamic control
Resumo:
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Resumo:
We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.
Resumo:
This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.
Resumo:
Electric-powered wheelchairs improve the mobility of people with physical disabilities, but the problem to deal with certain architectural barriers has not been resolved satisfactorily. In order to solve this problem, a stair-climbing mobility system (SCMS) was developed. This paper presents a practical dynamic control system that allows the SCMS to exhibit a successful climbing process when faced with typical architectural barriers such as curbs, ramps, or staircases. The implemented control system depicts high simplicity, computational efficiency, and the possibility of an easy implementation in a microprocessor-/microcontroller-based system. Finally, experiments are included to support theoretical results.
Resumo:
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.
Resumo:
Tactile sensors play an important role in robotics manipulation to perform dexterous and complex tasks. This paper presents a novel control framework to perform dexterous manipulation with multi-fingered robotic hands using feedback data from tactile and visual sensors. This control framework permits the definition of new visual controllers which allow the path tracking of the object motion taking into account both the dynamics model of the robot hand and the grasping force of the fingertips under a hybrid control scheme. In addition, the proposed general method employs optimal control to obtain the desired behaviour in the joint space of the fingers based on an indicated cost function which determines how the control effort is distributed over the joints of the robotic hand. Finally, authors show experimental verifications on a real robotic manipulation system for some of the controllers derived from the control framework.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
The purpose of this study is to apply robust inverse dynamics control for a six-degree-of-freedom flight simulator motion system. From an implementation viewpoint, simplification of the inverse dynamics control law is introduced by assuming control law matrices as constants. The robust control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation due this simplification. The control strategy is designed using the Lyapunov stability theory. Forward and inverse kinematics and a full dynamic model of a six-degree-of-freedom motion base driven by electromechanical actuators are briefly presented. A describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.
Resumo:
The issue of whether Real Estate Investment Trusts (REITs) should pursue a focused or diversified investment strategy remains an ongoing debate within both the academic and industry communities. This article considers the relationship between REITs focused on different property sectors in a Generalized Autoregressive Conditional Heteroscedasticity-Dynamic Control Correlation (GARCH-DCC) framework. The daily conditional correlations reveal that since 1990 there has been a marked upward trend in the coefficients between US REIT sub-sectors. The findings imply that REITs are behaving in a far more homogeneous manner than in the past. Furthermore, the argument that REITs should be focused in order that investors can make the diversification decision is reduced.
Resumo:
The study investigates the role of credit risk in a continuous time stochastic asset allocation model, since the traditional dynamic framework does not provide credit risk flexibility. The general model of the study extends the traditional dynamic efficiency framework by explicitly deriving the optimal value function for the infinite horizon stochastic control problem via a weighted volatility measure of market and credit risk. The model's optimal strategy was then compared to that obtained from a benchmark Markowitz-type dynamic optimization framework to determine which specification adequately reflects the optimal terminal investment returns and strategy under credit and market risks. The paper shows that an investor's optimal terminal return is lower than typically indicated under the traditional mean-variance framework during periods of elevated credit risk. Hence I conclude that, while the traditional dynamic mean-variance approach may indicate the ideal, in the presence of credit-risk it does not accurately reflect the observed optimal returns, terminal wealth and portfolio selection strategies.