863 resultados para Dynamic control


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors demonstrate that a widely proposed method of robot dynamic control can be inherently unstable, due to an algebraic feedback loop condition causing an ill-posed feedback system. By focussing on the concept of ill-posedness a necessary and sufficient condition is derived for instability in robot manipulator systems which incorporate online acceleration cross-coupling control. Also demonstrated is a quasilinear multivariable control framework useful for assessing the robustness of this type of control when the instability condition is not obeyed.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of schemes involving multiple laser pulses to enhance and control the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets is discussed. Specifically, the schemes include the use of a second laser pulse to produce and control preplasma expansion of the target to enhance energy coupling to the proton beam; the use of a second laser pulse to drive shock deformation of the target to change the direction of the proton beam; and a scheme involving dual high intensity laser pulses to change the properties of the sheath field, with the aim of modifying the proton energy spectrum. An overview of our recent experimental and theoretical results is given. The overall aim of this work is to determine the extent to which the properties of the sheath-accelerated proton beam can be optically controlled, to enable beam delivery at high repetition rates. To cite this article: D.C. Carroll et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a finite element formulation based on the classical laminated plate theory, for active control of thin plate laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previous optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position is performed to maximize the piezoelectric actuator efficiency. The genetic algorithm is used for these purposes. The finite element model is a single layer triangular plate/shell element with 24 degrees of freedom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, which can be surface bonded or embedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an infinite horizon optimal impulsive control problems for which a given cost function is minimized by choosing control strategies driving the state to a point in a given closed set C ∞. We present necessary conditions of optimality in the form of a maximum principle for which the boundary condition of the adjoint variable is such that non-degeneracy due to the fact that the time horizon is infinite is ensured. These conditions are given for conventional systems in a first instance and then for impulsive control problems. They are proved by considering a family of approximating auxiliary interval conventional (without impulses) optimal control problems defined on an increasing sequence of finite time intervals. As far as we know, results of this kind have not been derived previously. © 2010 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents and discusses a maximum principle for infinite horizon constrained optimal control problems with a cost functional depending on the state at the final time. The main feature of these optimality conditions is that, under reasonably weak assumptions, the multiplier is shown to satisfy a novel transversality condition at infinite time. It is also shown that these conditions can also be obtained for impulsive control problems whose dynamics are given by measure driven differential equations. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric-powered wheelchairs improve the mobility of people with physical disabilities, but the problem to deal with certain architectural barriers has not been resolved satisfactorily. In order to solve this problem, a stair-climbing mobility system (SCMS) was developed. This paper presents a practical dynamic control system that allows the SCMS to exhibit a successful climbing process when faced with typical architectural barriers such as curbs, ramps, or staircases. The implemented control system depicts high simplicity, computational efficiency, and the possibility of an easy implementation in a microprocessor-/microcontroller-based system. Finally, experiments are included to support theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.