989 resultados para Dynamic Equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schemes that can be proven to be unconditionally stable in the linear context can yield unstable solutions when used to solve nonlinear dynamical problems. Hence, the formulation of numerical strategies for nonlinear dynamical problems can be particularly challenging. In this work, we show that time finite element methods because of their inherent energy momentum conserving property (in the case of linear and nonlinear elastodynamics), provide a robust time-stepping method for nonlinear dynamic equations (including chaotic systems). We also show that most of the existing schemes that are known to be robust for parabolic or hyperbolic problems can be derived within the time finite element framework; thus, the time finite element provides a unification of time-stepping schemes used in diverse disciplines. We demonstrate the robust performance of the time finite element method on several challenging examples from the literature where the solution behavior is known to be chaotic. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new multi-output DC/DC converter topology that has step-up and step-down conversion capabilities. In this topology, several output voltages can be generated which can be used in different applications such as multilevel converters with diode-clamped topology or power supplies with several voltage levels. Steady state and dynamic equations of the proposed multi-output converter have been developed, that can be used for steady state and transient analysis. Two control techniques have been proposed for this topology based on constant and dynamic hysteresis band height control to address different applications. Simulations have been performed for different operating modes and load conditions to verify the proposed topology and its control technique. Additionally, a laboratory prototype is designed and implemented to verify the simulation results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In 1956 Whitham gave a nonlinear theory for computing the intensity of an acoustic pulse of an arbitrary shape. The theory has been used very successfully in computing the intensity of the sonic bang produced by a supersonic plane. [4.] derived an approximate quasi-linear equation for the propagation of a short wave in a compressible medium. These two methods are essentially nonlinear approximations of the perturbation equations of the system of gas-dynamic equations in the neighborhood of a bicharacteristic curve (or rays) for weak unsteady disturbances superimposed on a given steady solution. In this paper we have derived an approximate quasi-linear equation which is an approximation of perturbation equations in the neighborhood of a bicharacteristic curve for a weak pulse governed by a general system of first order quasi-linear partial differential equations in m + 1 independent variables (t, x1,…, xm) and derived Gubkin's result as a particular case when the system of equations consists of the equations of an unsteady motion of a compressible gas. We have also discussed the form of the approximate equation describing the waves propagating upsteam in an arbitrary multidimensional transonic flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the growth behavior of microorganisms using modeling and optimization techniques is an active area of research in the fields of biochemical engineering and systems biology. In this paper, we propose a general modeling framework, based on Monad model, to model the growth of microorganisms. Utilizing the general framework, we formulate an optimal control problem with the objective of maximizing a long-term cellular goal and solve it analytically under various constraints for the growth of microorganisms in a two substrate batch environment. We investigate the relation between long term and short term cellular goals and show that the objective of maximizing cellular concentration at a fixed final time is equivalent to maximization of instantaneous growth rate. We then establish the mathematical connection between the generalized framework and optimal and cybernetic modeling frameworks and derive generalized governing dynamic equations for optimal and cybernetic models. We finally illustrate the influence of various constraints in the cybernetic modeling framework on the optimal growth behavior of microorganisms by solving several dynamic optimization problems using genetic algorithms. (C) 2014 Published by Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simulation of the motion of molten aluminium inside an electrolytic cell is presented. Since the driving term of the aluminium motion is the Lorentz (j × B) body force acting within the fluid,this problem involves the solution of the magneto-hydro-dynamic equations. Different solver modules for the magnetic field computation and for the fluid motion simulation are coupled together. The interactions of all these are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work focuses on the dynamic modeling of a flexible robotic manipulator with two flexible links and two revolute joints, which rotates in the horizontal plane. The dynamic equations are derived using the Newton-Euler formulation and the finite element method, based on elementary beam theory. Computer simulation results are presented to illustrate this study. The dynamic model becomes necessary for use in future design and control applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is concerned with a generalization of the Riemann- Stieltjes integral on time scales for deal with some aspects of discontinuous dynamic equations in which Riemann-Stieltjes integral does not works. © 2011 Academic Publications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We prove a periodic averaging theorem for generalized ordinary differential equations and show that averaging theorems for ordinary differential equations with impulses and for dynamic equations on time scales follow easily from this general theorem. We also present a periodic averaging theorem for a large class of retarded equations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parallel kinematic structures are considered very adequate architectures for positioning and orienti ng the tools of robotic mechanisms. However, developing dynamic models for this kind of systems is sometimes a difficult task. In fact, the direct application of traditional methods of robotics, for modelling and analysing such systems, usually does not lead to efficient and systematic algorithms. This work addre sses this issue: to present a modular approach to generate the dynamic model and through some convenient modifications, how we can make these methods more applicable to parallel structures as well. Kane’s formulati on to obtain the dynamic equations is shown to be one of the easiest ways to deal with redundant coordinates and kinematic constraints, so that a suitable c hoice of a set of coordinates allows the remaining of the modelling procedure to be computer aided. The advantages of this approach are discussed in the modelling of a 3-dof parallel asymmetric mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.