993 resultados para Dynamic Electricity Tariffs
Resumo:
Dynamic electricity pricing can produce efficiency gains in the electricity sector and help achieve energy policy goals such as increasing electric system reliability and supporting renewable energy deployment. Retail electric companies can offer dynamic pricing to residential electricity customers via smart meter-enabled tariffs that proxy the cost to procure electricity on the wholesale market. Current investments in the smart metering necessary to implement dynamic tariffs show policy makers’ resolve for enabling responsive demand and realizing its benefits. However, despite these benefits and the potential bill savings these tariffs can offer, adoption among residential customers remains at low levels. Using a choice experiment approach, this paper seeks to determine whether disclosing the environmental and system benefits of dynamic tariffs to residential customers can increase adoption. Although sampling and design issues preclude wide generalization, we found that our environmentally conscious respondents reduced their required discount to switch to dynamic tariffs around 10% in response to higher awareness of environmental and system benefits. The perception that shifting usage is easy to do also had a significant impact, indicating the potential importance of enabling technology. Perhaps the targeted communication strategy employed by this study is one way to increase adoption and achieve policy goals.
Resumo:
This paper proposes a method for scheduling tariff time periods for electricity consumers. Europe will see a broader use of modern smart meters for electricity at residential consumers which must be used for enabling demand response. A heuristic-based method for tariff time period scheduling and pricing is proposed which considers different consumer groups with parameters studied a priori, taking advantage of demand response potential for each group and the fairness of electricity pricing for all consumers. This tool was applied to the case of Portugal, considering the actual network and generation costs, specific consumption profiles and overall electricity low voltage demand diagram. The proposed method achieves valid results. Its use will provide justification for the setting of tariff time periods by energy regulators, network operators and suppliers. It is also useful to estimate the consumer and electric sector benefits from changes in tariff time periods.
Resumo:
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Resumo:
The increasing importance of the integration of distributed generation and demand response in the power systems operation and planning, namely at lower voltage levels of distribution networks and in the competitive environment of electricity markets, leads us to the concept of smart grids. In both traditional and smart grid operation, non-technical losses are a great economic concern, which can be addressed. In this context, the ELECON project addresses the use of demand response contributions to the identification of non-technical losses. The present paper proposes a methodology to be used by Virtual Power Players (VPPs), which are entities able to aggregate distributed small-size resources, aiming to define the best electricity tariffs for several, clusters of consumers. A case study based on real consumption data demonstrates the application of the proposed methodology.
Resumo:
Given the complex structure of electricity tariffs and their steady growth in Spanish, we've studied its effect over the operating costs of the wastewater treatment plants (WWTP), concluding that in the last three years the revisions of electricity rates have meant increases in electricity costs of 64.5% in the rate 3.1.A and 79.1% in the rate 6.1. This has caused the cost of electricity, which was the most important, has increased from a 44% of total operating costs in the year 2009, to more than a 56% in the year 2012.
Resumo:
Natural gas (NG) network and electric network are becoming tightly integrated by microturbines in the microgrid. Interactions between these two networks are not well captured by the traditional microturbine (MT) models. To address this issue, two improved models for single-shaft MT and split-shaft MT are proposed in this paper. In addition, dynamic models of the hybrid natural gas and electricity system (HGES) are developed for the analysis of their interactions. Dynamic behaviors of natural gas in pipes are described by partial differential equations (PDEs), while the electric network is described by differential algebraic equations (DAEs). So the overall network is a typical two-time scale dynamic system. Numerical studies indicate that the two-time scale algorithm is faster and can capture the interactions between the two networks. The results also show the HGES with a single-shaft MT is a weakly coupled system in which disturbances in the two networks mainly influence the dc link voltage of the MT, while the split-shaft MT is a strongly coupled system where the impact of an event will affect both networks.
Resumo:
This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
Resumo:
Distributed energy resources will provide a significant amount of the electricity generation and will be a normal profitable business. In the new decentralized grid, customers will be among the many decentralized players and may even help to co-produce the required energy services such as demand-side management and load shedding. So, they will gain the opportunity to be more active market players. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. In this paper we propose the improvement of MASCEM, a multi-agent simulation tool to study negotiations in electricity spot markets based on different market mechanisms and behavior strategies, in order to take account of decentralized players such as VPP.
Resumo:
This paper addresses the impact of the CO2 opportunity cost on the wholesale electricity price in the context of the Iberian electricity market (MIBEL), namely on the Portuguese system, for the period corresponding to the Phase II of the European Union Emission Trading Scheme (EU ETS). In the econometric analysis a vector error correction model (VECM) is specified to estimate both long–run equilibrium relations and short–run interactions between the electricity price and the fuel (natural gas and coal) and carbon prices. The model is estimated using daily spot market prices and the four commodities prices are jointly modelled as endogenous variables. Moreover, a set of exogenous variables is incorporated in order to account for the electricity demand conditions (temperature) and the electricity generation mix (quantity of electricity traded according the technology used). The outcomes for the Portuguese electricity system suggest that the dynamic pass–through of carbon prices into electricity prices is strongly significant and a long–run elasticity was estimated (equilibrium relation) that is aligned with studies that have been conducted for other markets.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
One of the most common Demand Side Management programs consists of Time-of-Use (TOU) tariffs, where consumers are charged differently depending on the time of the day when they make use of energy services. This paper assesses the impacts of TOU tariffs on a dataset of residential users from the Province of Trento in Northern Italy in terms of changes in electricity demand, price savings, peak load shifting and peak electricity demand at substation level. Findings highlight that TOU tariffs bring about higher average electricity consumption and lower payments by consumers. A significant level of load shifting takes place for morning peaks. However, issues with evening peaks are not resolved. Finally, TOU tariffs lead to increases in electricity demand for substations at peak time.
Resumo:
In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.
Resumo:
Electricity is the cornerstone of modern life. It is essential to economic stability and growth, jobs and improved living standards. Electricity is also the fundamental ingredient for a dignified life; it is the source of such basic human requirements as cooked food, a comfortable living temperature and essential health care. For these reasons, it is unimaginable that today's economies could function without electricity and the modern energy services that it delivers. Somewhat ironically, however, the current approach to electricity generation also contributes to two of the gravest and most persistent problems threatening the livelihood of humans. These problems are anthropogenic climate change and sustained human poverty. To address these challenges, the global electricity sector must reduce its reliance on fossil fuel sources. In this context, the object of this research is twofold. Initially it is to consider the design of the Renewable Energy (Electricity) Act 2000 (Cth) (Renewable Electricity Act), which represents Australia's primary regulatory approach to increase the production of renewable sourced electricity. This analysis is conducted by reference to the regulatory models that exist in Germany and Great Britain. Within this context, this thesis then evaluates whether the Renewable Electricity Act is designed effectively to contribute to a more sustainable and dignified electricity generation sector in Australia. On the basis of the appraisal of the Renewable Electricity Act, this thesis contends that while certain aspects of the regulatory regime have merit, ultimately its design does not represent an effective and coherent regulatory approach to increase the production of renewable sourced electricity. In this regard, this thesis proposes a number of recommendations to reform the existing regime. These recommendations are not intended to provide instantaneous or simple solutions to the current regulatory regime. Instead, the purpose of these recommendations is to establish the legal foundations for an effective regulatory regime that is designed to increase the production of renewable sourced electricity in Australia in order to contribute to a more sustainable and dignified approach to electricity production.
Resumo:
The Japanese electricity industry has experienced regulatory reforms since the mid-1990s. This article measures productivity in Japan's steam power-generation sector and examines the effect of reforms on the productivity of this industry over the period 1978-2003. We estimate the Luenberger productivity indicator, which is a generalization of the commonly used Malmquist productivity index, using a data envelopment analysis approach. Factors associated with productivity change are investigated through dynamic generalized method of moments (GMM) estimation of panel data. Our empirical analysis shows that the regulatory reforms have contributed to productivity growth in the steam power-generation sector in Japan.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.