967 resultados para Dynamic Contrast Enhanced Magnetic Resonance Imaging


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE In contrast to conventional breast imaging techniques, one major diagnostic benefit of breast magnetic resonance imaging (MRI) is the simultaneous acquisition of morphologic and dynamic enhancement characteristics, which are based on angiogenesis and therefore provide insights into tumor pathophysiology. The aim of this investigation was to intraindividually compare 2 macrocyclic MRI contrast agents, with low risk for nephrogenic systemic fibrosis, in the morphologic and dynamic characterization of histologically verified mass breast lesions, analyzed by blinded human evaluation and a fully automatic computer-assisted diagnosis (CAD) technique. MATERIALS AND METHODS Institutional review board approval and patient informed consent were obtained. In this prospective, single-center study, 45 women with 51 histopathologically verified (41 malignant, 10 benign) mass lesions underwent 2 identical examinations at 1.5 T (mean time interval, 2.1 days) with 0.1-mmol kg doses of gadoteric acid and gadobutrol. All magnetic resonance images were visually evaluated by 2 experienced, blinded breast radiologists in consensus and by an automatic CAD system, whereas the morphologic and dynamic characterization as well as the final human classification of lesions were performed based on the categories of the Breast imaging reporting and data system MRI atlas. Lesions were also classified by defining their probability of malignancy (morpho-dynamic index; 0%-100%) by the CAD system. Imaging results were correlated with histopathology as gold standard. RESULTS The CAD system coded 49 of 51 lesions with gadoteric acid and gadobutrol (detection rate, 96.1%); initial signal increase was significantly higher for gadobutrol than for gadoteric acid for all and the malignant coded lesions (P < 0.05). Gadoteric acid resulted in more postinitial washout curves and fewer continuous increases of all and the malignant lesions compared with gadobutrol (CAD hot spot regions, P < 0.05). Morphologically, the margins of the malignancies were different between the 2 agents, whereas gadobutrol demonstrated more spiculated and fewer smooth margins (P < 0.05). Lesion classifications by the human observers and by the morpho-dynamic index compared with the histopathologic results did not significantly differ between gadoteric acid and gadobutrol. CONCLUSIONS Macrocyclic contrast media can be reliably used for breast dynamic contrast-enhanced MRI. However, gadoteric acid and gadobutrol differed in some dynamic and morphologic characterization of histologically verified breast lesions in an intraindividual, comparison. Besides the standardization of technical parameters and imaging evaluation of breast MRI, the standardization of the applied contrast medium seems to be important to receive best comparable MRI interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic aortic valve disease (AVD) is characterized by progressive accumulation of interstitial myocardial fibrosis (MF). However, assessment of MF accumulation has only been possible through histologic analyses of endomyocardial biopsies. We sought to evaluate contrast-enhanced magnetic resonance imaging (ce-MRI) as a noninvasive method to identify the presence of increased MF in patients with severe AVD. Methods Seventy patients scheduled to undergo aortic valve replacement surgery were examined by cine and ce-MRI in a 1.5-T scanner. Cine images were used for the assessment of left ventricular (LV) volumes, mass, and function. Delayed-enhancement images were used to characterize the regions of MF. In addition, histologic analyses of myocardial samples obtained during aortic valve replacement surgery were used for direct quantification of interstitial MF. Ten additional subjects who died of noncardiac causes served as controls for the quantitative histologic analyses. Results Interstitial MF determined by histopathologic analysis was higher in patients with AVID than in controls (2.7% +/- 2.0% vs 0.6% +/- 0.2%, P =.001). When compared with histopathologic results, ce-MRI demonstrated a sensitivity of 74%, a specificity of 81%, and an accuracy of 76% to identify AVD patients with increased interstitial MF There was a significant inverse correlation between interstitial MF and LV ejection fraction (r = -0.67, P <.0001). Accordingly, patients with identifiable focal regions of MF by ce-MRI exhibited worse LV systolic function than those without MF (45% +/- 14% vs 65% +/- 14%, P <.0001). Conclusions Contrast-enhanced MRI allows for the noninvasive detection of focal regions of MF in patients with severe AVD. Moreover, patients with identifiable MF by ce-MRI exhibited worse LV functional parameters. (Am Heart J 2009; 157:361-8.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES We sought to determine whether the transmural extent of scar (TES) explains discordances between dobutamine echocardiography (DbE) and thallium single-photon emission computed tomography (Tl-SPECT) in the detection of viable myocardium (VM). BACKGROUND Discrepancies between DbE and Tl-SPECT are often attributed to differences between contractile reserve and membrane integrity, but may also reflect a disproportionate influence of nontransmural scar on thickening at DbE. METHODS Sixty patients (age 62 +/- 12 years; 10 women and 50 men) with postinfarction left ventricular dysfunction underwent standard rest-late redistribution Tl-SPECT and DbE. Viable myocardium was identified when dysfunctional segments showed Tl activity >60% on the late-redistribution image or by low-dose augmentation at DbE. Contrast-enhanced magnetic resonance imaging (ceMRI) was used to divide TES into five groups: 0%, 75% of the wall thickness replaced by scar. RESULTS As TES increased, both the mean Tl uptake and change in wall motion score decreased significantly (both p < 0.001). However, the presence of subendocardial scar was insufficient to prevent thickening; >50% of segments still showed contractile function with TES of 25% to 75%, although residual function was uncommon with TES >75%. The relationship of both tests to increasing TES was similar, but Tl-SPECT identified VM more frequently than DbE in all groups. Among segments without scar or with small amounts of scar (50% were viable by SPECT. CONCLUSIONS Both contractile reserve and perfusion are sensitive to the extent of scar. However, contractile reserve may be impaired in the face of no or minor scar, and thickening may still occur with extensive scar. (C) 2004 by the American College of Cardiology Foundation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrast enhanced magnetic resonance imaging (CE MRI) is the most sensitive tool for screening women who are at high familial risk of breast cancer. Our aim in this study was to assess the cost-effectiveness of X-ray mammography (XRM), CE MRI or both strategies combined. In total, 649 women were enrolled in the MARIBS study and screened with both CE MRI and mammography resulting in 1881 screens and 1-7 individual annual screening events. Women aged 35-49 years at high risk of breast cancer, either because they have a strong family history of breast cancer or are tested carriers of a BRCA1, BRCA2 or TP53 mutation or are at a 50% risk of having inherited such a mutation, were recruited from 22 centres and offered annual MRI and XRM for between 2 and 7 years. Information on the number and type of further investigations was collected and specifically calculated unit costs were used to calculate the incremental cost per cancer detected. The numbers of cancer detected was 13 for mammography, 27 for CE MRI and 33 for mammography and CE MRI combined. In the subgroup of BRCA1 (BRCA2) mutation carriers or of women having a first degree relative with a mutation in BRCA1 (BRCA2) corresponding numbers were 3 (6), 12 (7) and 12 (11), respectively. For all women, the incremental cost per cancer detected with CE MRI and mammography combined was 28 pound 284 compared to mammography. When only BRCA1 or the BRCA2 groups were considered, this cost would be reduced to 11 pound 731 (CE MRI vs mammography) and 15 pound 302 (CE MRI and mammography vs mammography). Results were most sensitive to the unit cost estimate for a CE MRI screening test. Contrast-enhanced MRI might be a cost-effective screening modality for women at high risk, particularly for the BRCA1 and BRCA2 subgroups. Further work is needed to assess the impact of screening on mortality and health-related quality of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background DCE@urLAB is a software application for analysis of dynamic contrast-enhanced magnetic resonance imaging data (DCE-MRI). The tool incorporates a friendly graphical user interface (GUI) to interactively select and analyze a region of interest (ROI) within the image set, taking into account the tissue concentration of the contrast agent (CA) and its effect on pixel intensity. Results Pixel-wise model-based quantitative parameters are estimated by fitting DCE-MRI data to several pharmacokinetic models using the Levenberg-Marquardt algorithm (LMA). DCE@urLAB also includes the semi-quantitative parametric and heuristic analysis approaches commonly used in practice. This software application has been programmed in the Interactive Data Language (IDL) and tested both with publicly available simulated data and preclinical studies from tumor-bearing mouse brains. Conclusions A user-friendly solution for applying pharmacokinetic and non-quantitative analysis DCE-MRI in preclinical studies has been implemented and tested. The proposed tool has been specially designed for easy selection of multi-pixel ROIs. A public release of DCE@urLAB, together with the open source code and sample datasets, is available at http://www.die.upm.es/im/archives/DCEurLAB/ webcite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic contrast agent-enhanced magnetic resonance imaging (DCE MRI) data, when analyzed with the appropriate pharmacokinetic models, have been shown to provide quantitative estimates of microvascular parameters important in characterizing the angiogenic activity of malignant tissue. These parameters consist of the whole blood volume per unit volume of tissue, v b, transport constant from the plasma to the extravascular, extracellular space (EES), k1 and the transport constant from the EES to the plasma, k2. Parameters vb and k1 are expected to correlate with microvascular density (MVD) and vascular permeability, respectively, which have been suggested to serve as surrogate markers for angiogenesis. In addition to being a marker for angiogenesis, vascular permeability is also useful in estimating tumor penetration potential of chemotherapeutic agents. ^ Histological measurements of the intratumoral microvascular environment are limited by their invasiveness and susceptibility to sampling errors. Also, MVD and vascular permeability, while useful for characterizing tumors at a single time point, have shown less utility in longitudinal studies, particularly when used to monitor the efficacy of antiangiogenic and traditional chemotherapeutic agents. These limitations led to a search for a non-invasive means of characterizing the microvascular environment of an entire tumor. ^ The overall goal of this project was to determine the utility of DCE MRI for monitoring the effect of antiangiogenic agents. Further applications of a validated DCE MRI technique include in vivo measurements of tumor microvascular characteristics to aid in determining prognosis at presentation and in estimating drug penetration. DCE MRI data were generated using single- and dual-tracer pharmacokinetic models with different molecular-weight contrast agents. The resulting pharmacokinetic parameters were compared to immunohistochemical measurements. The model and contrast agent combination yielding the best correlation between the pharmacokinetic parameters and histological measures was further evaluated in a longitudinal study to evaluate the efficacy of DCE MRI in monitoring the intratumoral microvascular environment following antiangiogenic treatment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives We sought to determine whether the quantitative assessment of myocardial fibrosis (MF), either by histopathology or by contrast-enhanced magnetic resonance imaging (ce-MRI), could help predict long-term survival after aortic valve replacement. Background Severe aortic valve disease is characterized by progressive accumulation of interstitial MF. Methods Fifty-four patients scheduled to undergo aortic valve replacement were examined by ce-MRI. Delayed-enhanced images were used for the quantitative assessment of MF. In addition, interstitial MF was quantified by histological analysis of myocardial samples obtained during open-heart surgery and stained with picrosirius red. The ce-MRI study was repeated 27 +/- 22 months after surgery to assess left ventricular functional improvement, and all patients were followed for 52 +/- 17 months to evaluate long-term survival. Results There was a good correlation between the amount of MF measured by histopathology and by ce-MRI (r = 0.69, p < 0.001). In addition, the amount of MF demonstrated a significant inverse correlation with the degree of left ventricular functional improvement after surgery (r = -0.42, p = 0.04 for histopathology; r = -0.47, p = 0.02 for ce-MRI). Kaplan-Meier analyses revealed that higher degrees of MF accumulation were associated with worse long-term survival (chi-square = 6.32, p = 0.01 for histopathology; chi-square = 5.85, p = 0.02 for ce-MRI). On multivariate Cox regression analyses, patient age and the amount of MF were found to be independent predictors of all-cause mortality. Conclusions The amount of MF, either by histopathology or by ce-MRI, is associated with the degree of left ventricular functional improvement and all-cause mortality late after aortic valve replacement in patients with severe aortic valve disease. (J Am Coll Cardiol 2010; 56: 278-87) (c) 2010 by the American College of Cardiology Foundation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess the feasibility of performing pulmonary angiography using MRI with contrast enhancement in patients with pulmonary vascular disease. METHODS: We present our experience in ten individuals, two controls and eight patients who underwent the exam after injection of a gadolinium-based contrast agent on a 1 Tesla MR scanner using a time-of-flight sequence and breath-holding during injection of contrast. RESULTS: Pathology in the main pulmonary artery and its major branches was detected easily while resolution at the segmental and subsegmental levels was inadequate. CONCLUSION: Contrast-enhanced magnetic resonance pulmonary angiography is feasible on a 1 Tesla MR scanner for the study of pathology of the main pulmonary artery and its major branches, like massive pulmonary embolism. However its ability to detect and define distal vessel pathology as found in chronic thromboembolic pulmonary hypertension and small pulmonary emboli is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Mossy fiber sprouting (MFS) is a frequent finding following status epilepticus (SE). The present study aimed to test the feasibility of using manganese-enhanced magnetic resonance imaging (MEMRI) to detect MFS in the chronic phase of the well-established pilocarpine (Pilo) rat model of temporal lobe epilepsy (TLE). Methods: To modulate MFS, cycloheximide (CHX), a protein synthesis inhibitor, was coadministered with Pilo in a subgroup of animals. In vivo MEMRI was performed 3 months after induction of SE and compared to the neo-Timm histologic labeling of zinc mossy fiber terminals in the dentate gyrus (DG). Key Findings: Chronically epileptic rats displaying MFS as detected by neo-Timm histology had a hyperintense MEMRI signal in the DG, whereas chronically epileptic animals that did not display MFS had minimal MEMRI signal enhancement compared to nonepileptic control animals. A strong correlation (r = 0.81, p < 0.001) was found between MEMRI signal enhancement and MFS. Significance: This study shows that MEMRI is an attractive noninvasive method for detection of mossy fiber sprouting in vivo and can be used as an evaluation tool in testing therapeutic approaches to manage chronic epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate whether T1-mapping of hip joint with intra-articular delayed gadolinium-enhanced magnetic resonance imaging (MRI) of cartilage (ia-dGEMRIC) is comparable to the already established intravenous (iv)-technique for assessing different grades of cartilage degeneration.