993 resultados para Dye removal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorbents from coal fly ash treated by a solid-state fusion method using NaOH were prepared. It was found that amorphous aluminosilicate, geopolymers would be formed. These fly ash-derived inorganic polymers were assessed as potential adsorbents for removal of some basic dyes, methylene blue and crystal violet, from aqueous solution. It was found that the adsorption capacity of the synthesised adsorbents depends on the preparation conditions such as NaOH:fly-ash ratio and fusion temperature with the optimal conditions being at 121 weight ratio of Na:fly-ash at 250-350 degrees C. The synthesised materials exhibit much higher adsorption capacity than fly ash itself and natural zeolite. The adsorption isotherm can be fitted by Langmuir and Freundlich models while the two-site Langmuir model producing the best results. It was also found that the fly ash derived geopolymeric adsorbents show higher adsorption capacity for crystal violet than methylene blue and the adsorption temperature influences the adsorption capacity. Kinetic studies show that the adsorption process follows the pseudo second-order kinetics. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel recyclable and flexible membrane was prepared for the removal of oil spills and organic dye pollutants, by functionalizing polyester textiles with reduced graphene oxide@ZnO nanocomposites using a layer-by-layer technique. The membrane showed efficient water/oil separation, and the amount of oil adsorbed by the membrane could be up to 23 times its own weight. The adsorption capacity was largely retained during many adsorption recycling cycles. The membrane also displayed highly efficient removal of a dye pollutant from water under simulated sunlight. The membrane maintained a near-original removal efficiency after five cycles of dye removal. This new type of membrane may find practical applications in the large-scale separation of organic pollutants from water, particularly in the field of oil spills clean-up and dye removal from industrial effluent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g(-1) of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new mesoporous carbon (MCSG60) was developed using an inexpensive commercial mesoporous silica gel as a template and sucrose as the carbon source. The surface area, porosity and density of the carbon were determined. The material possesses a high specific surface area and pore volume accessible for most typical aqueous pollutants. The adsorbent material was tested in a batch dye adsorption system. The behaviour of three reactive dyes adsorbed onto MCSG60 was evaluated (Naphthol Blue Black, NBB; Reactive Black 5, RB5; and Remazol Brilliant Blue R, RBBR). The maximum adsorption capacities obtained for the dyes were: 270. mg/g for NBB; 270. mg/g for RB5; and 280. mg/g for RBBR. Kinetic studies indicated that the adsorption process onto the mesoporous carbon was rapid and that equilibrium was reached in less than 1. h for all the dye systems investigated. Further batch experiments showed MCSG60 successfully adsorbed the dyes over a wide pH range and at low adsorbate concentration. The adsorption potential of MCSG60 for dye removal was further evaluated using a fixed-bed adsorption column. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mesoporous materials were used as adsorbents for dye removal in different media: non-ionic, buffered and saline. The mesoporous materials used were commercial (silica gel) as well as as-synthesised materials (SBA-15 and a novel mesoporous carbon). Dye adsorption onto all the materials was very fast and the equilibrium was reached before 1h. The pH has a significant influence on the adsorption capacity for the siliceous materials since the electrostatic interactions are the driving forces. However, the influence of the pH on the adsorption capacity of the carbonaceous material was lower, since the van der Waals interactions are the driving forces. The ionic strength has a great impact on the siliceous materials adsorption capacity, being their adsorption capacity in a buffered medium six times higher than the corresponding to a non-ionic medium. Nevertheless, ionic strength does not influence on the dye adsorption on the mesoporous carbon. Overall, the as-synthesised carbon material presents a clear potential to treat dye effluents, showing high adsorption capacity (qe≈200mg/g) in all the pH range studied (from 3 to 11); even at low concentrations (Ce≈10mg/L) and at short contact times (te<30min).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carra sawdust pretrated with formaldehyde was used to adsorb RR239 (reactive azo dye) at varying pH and zerovalent iron (ZVI) dosage. Modeling of kinetic results shows that sorption process is best described by the pseudo-second-order model. Batch experiments suggest that the decolorization efficiency was strongly enhanced with the presence of ZVI and low solution pH. The kinetics of dye sorption by mixed sorbent (5 g of sawdust and 180 mg of ZVI) at pH 2.0 was rapid, reaching more than 90% of the total discoloration in three minutes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colour removal and the flux behaviour of nanofiltration (NF-DOW FILMTEC-NF245) and forward osmosis (FO-a flat sheet cellulose triacetate membrane with a woven embedded backing support) membranes were investigated in this study. The NF membrane was employed to perform dye removal experiments with aqueous solutions containing 15 g/L of NaCl and different concentrations of Acid Green 25, Remazol Brilliant Orange FR and Remazol Blue BR dyes. The increase in dye concentration resulted in a decline in water permeability and an increase in colour removal. When the concentrations of dye solutions varied from 250 to 1000 mg/L, at 0.8 bar of trans-membrane pressure, the NF system exhibited a steady permeate flux of more 30 L/m2h and a colour removal of more than 99%; salt rejection was more than 20.0%. Furthermore, the FO system possessed high dye rejection efficiency (almost 100%), with low permeate flux of around 2.0 L/m2h, when using dye solutions as feed streams and seawater as draw stream. The mode of operation (either FO or pressure retarded osmosis (PRO) did not change the flux significantly but PRO mode always produced higher fluxes than FO mode under the operating conditions used in this study. While both NF and FO can be used to reduce the volume of effluent containing dyes from textile industries, the energy spent in NF on applied pressure can be substituted by the osmotic pressure of draw solution in FO when concentrated draw solutions such as sea water or reverse osmosis concentrate are readily available.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The textile industry consumes large quantities of water and chemicals, especially in dyeing and finishing processes. Textile dye adsorption can be accomplished with natural or synthetic compounds. Cell immobilization using biomaterials allows the reduction of toxicity and mechanical resistance and opens spaces within the matrix for cell growth. The use of natural materials, such as sugarcane bagasse, is promising due to the low costs involved. The aim of the present study was to evaluate the use of sugarcane bagasse treated with either polyethyleneimine (PEI), NaOH or distilled water in the cell immobilization of Saccharomyces cerevisiae for textile dye removal. Three different adsorption tests were conducted: treated sugarcane bagasse alone, free yeast cells and bagasse-immobilized yeast cells. Yeast immobilization was 31.34% with PEI-treated bagasse, 8.56% with distilled water and 22.54% with NaOH. PEI-treated bagasse exhibited the best removal rates of the dye at all pH values studied (2.50, 4.50 and 6.50). The best Acid Black 48 adsorption rates were obtained with use of free yeast cells. At pH 2.50, 1 mg of free yeast cells was able to remove 5488.49 g of the dye. The lowest adsorption capacity rates were obtained using treated bagasse alone. However, the use of bagasse-immobilized cells increased adsorption efficiency from 20 to 40%. The use of immobilized cells in textile dye removal is very attractive due to adsorbed dye precipitation, which eliminates the industrial need for centrifugation processes. Dye adsorption using only yeast cells or sugarcane bagasse requires separation methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this research, micro and nanoparticles of Spirulina platensis dead biomass were obtained, characterized and employed to removal FD&C red no. 40 and acid blue 9 synthetic dyes from aqueous solutions. The effects of particle size (micro and nano) and biosorbent dosage (from 50 to 750 mg) were studied. Pseudofirst order, pseudo-second order and Elovich models were used to evaluate the biosorption kinetics. The biosorption nature was verified using energy dispersive X-ray spectroscopy (EDS). The best results for both dyes were found using 250 mg of nanoparticles, in these conditions, the biosorption capacities were 295 mg g−1 and 1450 mg g−1, and the percentages of dye removal were 15.0 and 72.5% for the FD&C red no. 40 and acid blue 9, respectively. Pseudo-first order model was the more adequate to represent the biosorption of both dyes onto microparticles, and Elovich model was more appropriate to the biosorption onto nanoparticles. The EDS results suggested that the dyes biosorption onto microparticles occurred mainly by physical interactions, and for the nanoparticles, chemisorption was dominant.