451 resultados para Dwellings.
Resumo:
This paper presents an explanation of why the reuse of building components after demolition or deconstruction is critical to the future of the construction industry. An examination of the historical cause and response to climate change sets the scene as to why governance is becoming increasingly focused on the built environment as a mechanism to controlling waste generation associated with the process of demolition, construction and operation. Through an annotated description to the evolving design and construction methodology of a range of timber dwellings (typically 'Queenslanders' during the eras of 1880-1900, 1900-1920 & 1920-1940) the paper offers an evaluation to the variety of materials, which can be used advantageously by those wishing to 'regenerate' a Queenslander. This analysis of 'regeneration' details the constraints when considering relocation and/ or reuse by adaption including deconstruction of building components against the legislative framework requirements of the Queensland Building Act 1975 and the Queensland Sustainable Planning Act 2009, with a specific examination to those of the Building Codes of Australia. The paper concludes with a discussion of these constraints, their impacts on 'regeneration' and the need for further research to seek greater understanding of the practicalities and drivers of relocation, adaptive and building components suitability for reuse after deconstruction.
Resumo:
Dwellings in multi-storey apartment buildings (MSAB) are predicted to increase dramatically as a proportion of housing stock in subtropical cities over coming decades. The problem of designing comfortable and healthy high-density residential environments and minimising energy consumption must be addressed urgently in subtropical cities globally. This paper explores private residents’ experiences of privacy and comfort and their perceptions of how well their apartment dwelling modulated the external environment in subtropical conditions through analysis of 636 survey responses and 24 interviews with residents of MSAB in inner urban neighbourhoods of Brisbane, Australia. The findings show that the availability of natural ventilation and outdoor private living spaces play important roles in resident perceptions of liveability in the subtropics where the climate is conducive to year round “outdoor living”. Residents valued choice with regard to climate control methods in their apartments. They overwhelmingly preferred natural ventilation to manage thermal comfort, and turned to the air-conditioner for limited periods, particularly when external conditions were too noisy. These findings provide a unique evidence base for reducing the environmental impact of MSAB and increasing the acceptability of apartment living, through incorporating residential attributes positioned around climate-responsive architecture.
Resumo:
Balconies, as one of the main architectural features in subtropical climates, are assumed to enhance the ventilation performance of buildings by redirecting the wind. Although there are some studies on the effect of balconies on natural ventilation inside buildings, the majority have been conducted on single zone buildings with simple geometries. The purpose of this study is to explore the effect of balconies on the internal air flow pattern and ventilation performance of multi-storey residential buildings with internal partitions. To this end, a sample residential unit was selected for investigation and three different conditions tested, base case (no balcony), an open balcony and a semi-enclosed balcony. Computational Fluid Dynamics is used as an analysis method due to its accuracy and ability to provide detailed results. The cases are analysed in terms of average velocity, flow uniformity and number of Air Changes per Hour (ACH). The results suggest the introduction of a semi-enclosed balcony into high-rise dwellings improves the average velocity and flow uniformity. Integrating an open balcony results in reduction of the aforementioned parameters at 0° wind incidence.
Resumo:
Sugganahalli, a rural vernacular community in a warm-humid region in South India, is under transition towards adopting modern construction practices. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete (RCC)/tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Vernacular architecture evolves adopting local resources in response to the local climate adopting passive solar designs. This paper investigates the effectiveness of passive solar elements on the indoor thermal comfort by adopting modern climate-responsive design strategies. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Age-old traditional design considerations were found to concur with modern understanding into bio-climatic response and climate-responsiveness. Modern transitions were found to increase the average indoor temperatures in excess of 7 degrees C. Such transformations tend to shift the indoor conditions to a psychrometric zone that is likely to require active air-conditioning. Also, the surveyed thermal sensation votes were found to lie outside the extended thermal comfort boundary for hot developing countries provided by Givoni in the bio-climatic chart.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
This paper investigates 'future-proofing' as an unexplored yet all-important aspect in the design of low-energy dwellings. It refers particularly to adopting lifecycle thinking and accommodating risks and uncertainties in the selection of fabric energy efficiency measures and low or zero-carbon technologies. Based on a conceptual framework for future-proofed design, the paper first presents results from the analysis of two 'best practice' housing developments in England; i.e., North West Cambridge in Cambridge and West Carclaze and Baal in St. Austell, Cornwall. Second, it examines the 'Energy and CO2 Emissions' part of the Code for Sustainable Homes to reveal which design criteria and assessment methods can be practically integrated into this established building certification scheme so that it can become more dynamic and future-oriented.Practical application: Future-proofed construction is promoted implicitly within the increasingly stringent building regulations; however, there is no comprehensive method to readily incorporate futures thinking into the energy design of buildings. This study has a three-fold objective of relevance to the building industry:Illuminating the two key categories of long-term impacts in buildings, which are often erroneously treated interchangeably:- The environmental impact of buildings due to their long lifecycles.- The environment's impacts on buildings due to risks and uncertainties affecting the energy consumption by at least 2050. This refers to social, technological, economic, environmental and regulatory (predictable or unknown) trends and drivers of change, such as climate uncertainty, home-working, technology readiness etc.Encouraging future-proofing from an early planning stage to reduce the likelihood of a prematurely obsolete building design.Enhancing established building energy assessment methods (certification, modelling or audit tools) by integrating a set of future-oriented criteria into their methodologies. © 2012 The Chartered Institution of Building Services Engineers.
Resumo:
This paper explores the interaction between rural development policy and spatial planning policies for rural housing within the context of the island of Ireland. It draws on research commissioned by the Northern Ireland Housing Executive for a high level review of its rural housing policy. The paper highlights issues of wider relevance comprising a strained relationship between rural communities and rural planning, and argues for the adoption of cultural, environmental and community values within the rural planning policy arena.
Resumo:
This project involves the construction of a dwelling in the outskirts of Dublin City. Situated in a disused quarry, the house act as an inhabited bridge, spanning between natural and man made outcrops, service structures and a shared entrance staircase. The houses language derives from the structure necessary to achieve these spans.
The section internally is modeled to present a variety of scales of spaces. More intimate living spaces and bedrooms occur in a lower, north-facing wing. Taller living spaces address the south.
Incorporating rainwater harvesting, wood-gasifying boilers, on site wind powered electrical generation, solar thermal panels and very high levels of insulation the houses are close to energy neutral. The fact that the house is constructed in massive timber construction means that 250 tonnes of carbon are sequestered in its construction. The design includes a 25yar replanting strategy to replace the existing coniferous-forested surrounds with native species in a coppiced planting strategy to allow ongoing fuel for the house, and cash crops to be sold on.
Located in an area of outstanding natural beauty the planning and design of the house involved research into patterns of rural development, the relationship between man made interventions and the natural landscape and the technology of the vernacular. This latter research forms part of the themes being explored under the Kevin Kieran Arts Council / OPW Bursary
Aims / Objectives Questions
1 To design and construct a low energy place to dwell.
2 To investigate the relationship between man-made interventions and new construction in an area of outstanding natural beauty.
3 To derive a language of construction that is contemporary in nature but refers to precedents embedded in the vernacular.
4 To develop a low-carbon form of construction that allows the construction of the house to act to sequester carbon
5 To make a contemporary addition in sympathy with the qualities of the existing site
Resumo:
Building Information Modelling (BIM) is growing in pace, not only in design and construction stages, but also in the analysis of facilities throughout their life cycle. With this continued growth and utilisation of BIM processes, comes the possibility to adopt such procedures, to accurately measure the energy efficiency of buildings, to accurately estimate their energy usage. To this end, the aim of this research is to investigate if the introduction of BIM Energy Performance Assessment in the form of software analysis, provides accurate results, when compared with actual energy consumption recorded. Through selective sampling, three domestic case studies are scrutinised, with baseline figures taken from existing energy providers, the results scrutinised and compared with calculations provided from two separate BIM energy analysis software packages. Of the numerous software packages available, criterion sampling is used to select two of the most prominent platforms available on the market today. The two packages selected for scrutiny are Integrated Environmental Solutions - Virtual Environment (IES-VE) and Green Building Studio (GBS). The results indicate that IES-VE estimated the energy use in region of ±8% in two out of three case studies while GBS estimated usage approximately ±5%. The findings indicate that the introduction of BIM energy performance assessment, using proprietary software analysis, is a viable alternative to manual calculations of building energy use, mainly due to the accuracy and speed of assessing, even the most complex models. Given the surge in accurate and detailed BIM models and the importance placed on the continued monitoring and control of buildings energy use within today’s environmentally conscious society, this provides an alternative means by which to accurately assess a buildings energy usage, in a quick and cost effective manner.