971 resultados para Dwarf Elliptic Galaxies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV – the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present BVI photometry of 190 galaxies in the central 4 x 3 deg(2) region of the Fornax cluster observed with the Michigan Curtis Schmidt Telescope. Results from the Fornax Cluster Spectroscopic Survey (FCSS) and the Flair-II Fornax Surveys have been used to confirm the membership status of galaxies in the Fornax Cluster Catalogue (FCC). In our catalogue of 213 member galaxies, 92 (43 per cent) have confirmed radial velocities. In this paper, we investigate the surface brightness-magnitude relation for Fornax cluster galaxies. Particular attention is given to the sample of cluster dwarfs and the newly discovered ultracompact dwarf galaxies (UCDs) from the FCSS. We examine the reliability of the surface brightness-magnitude relation as a method for determining cluster membership and find that at surface brightnesses fainter than 22 mag arcsec(-2), it fails in its ability to distinguish between cluster members and barely resolved background galaxies. Cluster members exhibit a strong surface brightness-magnitude relation. Both elliptical (E) galaxies and dwarf elliptical (dE) galaxies increase in surface brightness as luminosity decreases. The UCDs lie off the locus of the relation. B-V and V-I colours are determined for a sample of 113 cluster galaxies and the colour-magnitude relation is explored for each morphological type. The UCDs lie off the locus of the colour-magnitude relation. Their mean V - I colours (similar to1.09) are similar to those of globular clusters associated with NGC 1399. The location of the UCDs on both surface brightness and colour-magnitude plots supports the 'galaxy threshing' model for infalling nucleated dwarf elliptical (dE, N) galaxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been proposed that dwarf irregular galaxies can be separated into two classes based on their formation mechanism; that they are the result of the collapse of a primordial gas cloud or that they are the product of condensation of gas in the tidal tails of interacting galaxies. Simulations of galaxy interactions indicate that one can differentiate between these two scenarios by the dark matter content, with a low dark matter content indicating a fossil tidal dwarf. The purpose of this dissertation was to explore the dark matter distribution of two dwarf irregular galaxies using optical and neutral atomic hydrogen data. For DDO 210, the method of mass-modelling was used to determine its dark matter. About 64% of the galaxy mass was calculated to be in the form of dark matter and hence it is unlikely to be a fossil tidal dwarf. The method of mass-modelling could not be used for DDO 169 as the galaxy shows evidence of being tidally disrupted and hence, has a disturbed velocity field. Instead, the suggestion that dark matter might be responsible for a pressure anomaly in DDO 169 was tested to determine its dark matter content. According to this method, a pressure anomaly does exist but without a concrete value for the scale-height, it is unclear whether the anomaly is due to the presence of dark matter. Hence one cannot say how much dark matter might actually be present in DDO 169. A rotation curve would be required to do this. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the issue of the constancy of the dark matter (DM) and baryonic Newtonian acceleration scales within the DM scale radius by considering a large sample of late-type galaxies. We rely on a Markov Chain Monte Carlo method to estimate the parameters of the halo model and the stellar mass-to-light ratio and then propagate the uncertainties from the rotation curve data to the estimate of the acceleration scales. This procedure allows us to compile a catalogue of 58 objects with estimated values of the B-band absolute magnitude M-B, the virial mass M-vir, and the DM and baryonic Newtonian accelerations (denoted as g(DM)(r(0)) and g(bar)(r(0)), respectively) within the scale radius r(0) which we use to investigate whether it is possible to define a universal acceleration scale. We find a weak but statistically meaningful correlation with M-vir thus making us argue against the universality of the acceleration scales. However, the results somewhat depend on the sample adopted so that a careful analysis of selection effects should be carried out before any definitive conclusion can be drawn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent all-object spectroscopic survey centred on the Fornax cluster of galaxies has discovered a population of subluminous and extremely compact members, called 'ultra-compact dwarf' (UCD) galaxies. In order to clarify the origin of these objects, we have used self-consistent numerical simulations to study the dynamical evolution a nucleated dwarf galaxy would undergo if orbiting the centre of the Fornax cluster and suffering from its strong tidal gravitational field. We find that the outer stellar components of a nucleated dwarf are removed by the strong tidal field of the cluster, whereas the nucleus manages to survive as a result of its initially compact nature. The developed naked nucleus is found to have physical properties (e. g. size and mass) similar to those observed for UCDs. We also find that although this formation process does not have a strong dependence on the initial total luminosity of the nucleated dwarf, it does depend on the radial density profile of the dark halo in the sense that UCDs are less likely to be formed from dwarfs embedded in dark matter haloes with central 'cuspy' density profiles. Our simulations also suggest that very massive and compact stellar systems can be rapidly and efficiently formed in the central regions of dwarfs through the merging of smaller star clusters. We provide some theoretical predictions on the total number and radial number density profile of UCDs in a cluster and their dependencies on cluster masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the evidence that the ultra-compact dwarf (UCD) galaxies we recently discovered in the Fornax Cluster form a new, previously unknown class of galaxies and we discuss possible scenarios for their formation. We then present recent results that UCDs are also present in the Virgo Cluster, and that there is a much larger than expected population of fainter UCDs in the Fornax Cluster. The size and properties of this population may lead us to revise our original 'galaxy threshing' hypothesis for the formation of UCDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have discovered nine ultracompact dwarf galaxies (UCDs) in the Virgo Cluster, extending samples of these objects outside the Fornax Cluster. Using the Two Degree Field (2dF) multifiber spectrograph on the Anglo-Australian Telescope, the new Virgo members were found among 1500 color-selected, starlike targets with 16: 0 < b(j) < 20.2 in a 2 degrees diameter field centered on M87 (NGC 4486). The newly found UCDs are comparable to the UCDs in the Fornax Cluster, with sizes less than or similar to 100 pc, -12.9 < M-B < -10.7, and exhibiting red absorption-line spectra, indicative of an older stellar population. The properties of these objects remain consistent with the tidal threshing model for the origin of UCDs from the surviving nuclei of nucleated dwarf elliptical galaxies disrupted in the cluster core but can also be explained as objects that were formed by mergers of star clusters created in galaxy interactions. The discovery that UCDs exist in Virgo shows that this galaxy type is probably a ubiquitous phenomenon in clusters of galaxies; coupled with their possible origin by tidal threshing, the UCD population is a potential indicator and probe of the formation history of a given cluster. We also describe one additional bright UCD with M-B = -12.0 in the core of the Fornax Cluster. We find no further UCDs in our Fornax Cluster Spectroscopic Survey down to bj 19.5 in two additional 2dF fields extending as far as 3 degrees from the center of the cluster. All six Fornax bright UCDs identified with 2dF lie within 0.degrees 5 (projected distance of 170 kpc) of the central elliptical galaxy NGC 1399.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Star formation occurs when the gas (mostly atomic hydrogen; H I) in a galaxy becomes disturbed, forming regions of high density gas, which then collapses to form stars. In dwarf galaxies it is still uncertain which processes contribute to star formation and how much they contribute to star formation. Blue compact dwarf (BCD) galaxies are low mass, low shear, gas rich galaxies that have high star formation rates when compared to other dwarf galaxies. What triggers the dense burst of star formation in BCDs but not other dwarfs is not well understood. It is often suggested that BCDs may have their starburst triggered by gravitational interactions with other galaxies, dwarf-dwarf galaxy mergers, or consumption of intergalactic gas. However, there are BCDs that appear isolated with respect to other galaxies, making an external disturbance unlikely.^ Here, I study six apparently isolated BCDs from the LITTLE THINGS sample in an attempt to understand what has triggered their burst of star formation. LITTLE THINGS is an H I survey of 41 dwarf galaxies. Each galaxy has high angular and velocity resolution H I data from the Very Large Array (VLA) telescope and ancillary stellar data. I use these data to study the detailed morphology and kinematics of each galaxy, looking for signatures of starburst triggers. In addition to the VLA data, I have collected Green Bank Telescope data for the six BCDs. These high sensitivity, low resolution data are used to search the surrounding area of each galaxy for extended emission and possible nearby companion galaxies.^ The VLA data show evidence that each BCD has likely experienced some form of external disturbance despite their apparent isolation. These external disturbances potentially seen in the sample include: ongoing/advanced dwarf-dwarf mergers, an interaction with an unknown external object, and external gas consumption. The GBT data result in no nearby, separate H I companions at the sensitivity of the data. These data therefore suggest that even though these BCDs appear isolated, they have not been evolving in isolation. It is possible that these external disturbances may have triggered the starbursts that defines them as BCDs.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The environment where galaxies are found heavily influences their evolution. Close groupings, like the ones in the cores of galaxy clusters or compact groups, evolve in ways far more dramatic than their isolated counterparts. We have conducted a multi-wavelength study of Hickson Compact Group 7 (HCG 7), consisting of four giant galaxies: three spirals and one lenticular. We use Hubble Space Telescope (HST) imaging to identify and characterize the young and old star cluster populations. We find young massive clusters (YMCs) mostly in the three spirals, while the lenticular features a large, unimodal population of globular clusters (GCs) but no detectable clusters with ages less than a few Gyr. The spatial and approximate age distributions of the similar to 300 YMCs and similar to 150 GCs thus hint at a regular star formation history in the group over a Hubble time. While at first glance the HST data show the galaxies as undisturbed, our deep ground-based, wide-field imaging that extends the HST coverage reveals faint signatures of stellar material in the intragroup medium (IGM). We do not, however, detect the IGM in H I or Chandra X-ray observations, signatures that would be expected to arise from major mergers. Despite this fact, we find that the H I gas content of the individual galaxies and the group as a whole are a third of the expected abundance. The appearance of quiescence is challenged by spectroscopy that reveals an intense ionization continuum in one galaxy nucleus, and post-burst characteristics in another. Our spectroscopic survey of dwarf galaxy members yields a single dwarf elliptical galaxy in an apparent stellar tidal feature. Based on all this information, we suggest an evolutionary scenario for HCG 7, whereby the galaxies convert most of their available gas into stars without the influence of major mergers and ultimately result in a dry merger. As the conditions governing compact groups are reminiscent of galaxies at intermediate redshift, we propose that HCGs are appropriate for studying galaxy evolution at z similar to 1-2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a new set of dissipationless N-body simulations to examine the feasibility of creating bright ellipticals (following the Kormendy relation, hereafter KR) by hierarchically merging present-day early-type dwarf galaxies, and to study how the encounter parameters affect the location of the end product in the (mu(e))-R-e plane. We investigate the merging of one-component galaxies of both equal and different masses, the merging of two-component galaxy models to explore the effect of dark haloes on the final galaxy characteristics, and the merging of ultracompact dwarf galaxies. We find that the increase of (mu(e)) with R-e is attributable to an increase in the initial orbital energy. The merger remnants shift down in the (mu(e))-R-e plane and fail to reach the KR. Thus, the KR is not reproducible by mergers of dwarf early-type systems, rendering untenable the theory that present-day dwarfs are responsible for even a small fraction of the present-day ellipticals, unless a considerable amount of dissipation is invoked. However, we do find that present-day dwarfs can be formed by the merger of ultracompact dwarfs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using imaging from the Hubble Space Telescope, we derive surface brightness profiles for ultracompact dwarfs in the Fornax Cluster and for the nuclei of dwarf elliptical galaxies in the Virgo Cluster. Ultracompact dwarfs are more extended and have higher surface brightnesses than typical dwarf nuclei, while the luminosities, colors, and sizes of the nuclei are closer to those of Galactic globular clusters. This calls into question the production of ultracompact dwarfs via threshing, whereby the lower surface brightness envelope of a dwarf elliptical galaxy is removed by tidal processes, leaving behind a bare nucleus. Threshing may still be a viable model if the relatively bright Fornax ultracompact dwarfs considered here are descended from dwarf elliptical galaxies whose nuclei are at the upper end of their luminosity and size distributions.