30 resultados para Duquesne


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Population growth rate (PGR) is central to the theory of population ecology and is crucial for projecting population trends in conservation biology, pest management and wildlife harvesting. Furthermore, PGR is increasingly used to assess the effects of stressors. Image analysis that can automatically count and measure photographed individuals offers a potential methodology for estimating PGR. 2. This study evaluated two ways in which the PGR of Daphnia magna, exposed to different stressors, can be estimated using an image analysis system. The first method estimated PGR as the ratio of counts of individuals obtained at two different times, while the second method estimated PGR as the ratio of population sizes at two different times, where size is measured by the sum of the individuals' surface areas, i.e. total population surface area. This method is attractive if surface area is correlated with reproductive value (RV), as it is for D. magna, because of the theoretical result that PGR is the rate at which the population RV increases. 3. The image analysis system proved reliable and reproducible in counting populations of up to 440 individuals in 5 L of water. Image counts correlated well with manual counts but with a systematic underestimate of about 30%. This does not affect accuracy when estimating PGR as the ratio of two counts. Area estimates of PGR correlated well with count estimates, but were systematically higher, possibly reflecting their greater accuracy in the study situation. 4. Analysis of relevant scenarios suggested the correlation between RV and body size will generally be good for organisms in which fecundity correlates with body size. In these circumstances, area estimation of PGR is theoretically better than count estimation. 5. Synthesis and applications. There are both theoretical and practical advantages to area estimation of population growth rate when individuals' reproductive values are consistently well correlated with their surface areas. Because stressors may affect both the number and quality of individuals, area estimation of population growth rate should improve the accuracy of predicting stress impacts at the population level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic, topographic paper map entitled: Pennsylvania, Pittsburgh quadrangle, Department of the Interior; U.S. Geological Survey; State of Pennsylvania represented by the Department of Internal Affairs Topographic and Geological Survey; H. W. Wilson geographer; Frank Sutton and Robt. D. Commin, in charge of section; topography by E.B. Clark, J.H. Wheat, A.C. Roberts and E.G. Hamilton; assistants J.S.B. Daingerfield and B.B. Alexander; and various town, city, and park surveys; control by D.H. Baldwin, W.R. Harper and R.W. Berry; river shoreline by U.S. Army Engineers. It was published by the U.S. Geoloogical Survey. Ed. of 1907, reprinted in 1928. Surveyed in 1903-1904. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane NAD 1927 coordinate projection (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown by spot heighs and with standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic, topographic paper map entitled: Pittsburgh and vicinity, Pennsylvania, mapped, edited, and published by the Geological Survey. It was published by The Survey in 1962. Scale 1:24,000. Compiled from 1:24,000-scale maps of New Kensington West, Glenshaw, Emsworth, Ambridge, Oakdale, Pittsburgh West, Pittsburgh East, Braddock McKeesport, Glassport, Bridgeville, and Canonsburg 1960 7.5 minute quadrangles. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane NAD 1927 coordinate projection (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with spot heights and standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.