969 resultados para Dual-Polarization Radar


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm² corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein adsorption plays a crucial role in biomaterial surface science as it is directly linked to the biocompatibility of artificial biomaterial devices. Here, elucidation of protein adsorption mechanism is effected using dual polarization interferometry and a quartz crystal microbalance to characterize lysozyme layer properties on a silica surface at different coverage values. Lysozyme is observed to adsorb from sparse monolayer to multilayer coverage. At low coverage an irreversibly adsorbed layer is formed with slight deformation consistent with side-on orientation. At higher coverage values dynamic re-orientation effects are observed which lead to monolayer surface coverages of 2-3 ng/mm2 corresponding to edge-on or/and end-on orientations. These monolayer thickness values ranged between 3 and 4.5 nm with a protein density value of 0.60 g/mL and with 50 wt% solvent mass. Further increase of coverage results formation of a multilayer structure. Using the hydration content and other physical layer properties a tentative model lysozyme adsorption is proposed. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The All-Weather Volcano Topography Imaging Sensor remote sensing instrument is a custom-built millimeter-wave (MMW) sensor that has been developed as a practical field tool for remote sensing of volcanic terrain at active lava domes. The portable instrument combines active and passive MMW measurements to record topographic and thermal data in almost all weather conditions from ground-based survey points. We describe how the instrument is deployed in the field, the quality of the primary ranging and radiometric measurements, and the postprocessing techniques used to derive the geophysical products of the target terrain, surface temperature, and reflectivity. By comparison of changing topography, we estimate the volume change and the lava extrusion rate. Validation of the MMW radiometry is also presented by quantitative comparison with coincident infrared thermal imagery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 27 March 1991, an isolated thunderstorm passed between the two CSIR Doppler radars, spaced about 45km apart. Both radars simultaneously recorded Doppler data of the storm, and a detailed case study during an 11-min period is presented. Air motions synthesized from these data provide the first three-dimensional display of Doppler-derived wind fields within a multicell storm on the Transvaal Highveld. Regions of high divergence values (10 -2s -1) at low levels were found mostly in close proximity to reflectivity maxima (45-51 dBZ), which is consistent with findings from North America, that gravitational loading by the precipitation plays a key role in the initiation and maintenance of downdraughts. -from Authors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reflectarray antenna with improved performance is proposed to operate in dual-polarization and transmit-receive frequencies in Ku-band for broadcast satellite applications. The reflectarray element contains two orthogonal sets of four coplanar parallel dipoles printed on two surfaces, each set combining lateral and broadside coupling. A 40-cm prototype has been designed, manufactured, and tested. The lengths of the coupled dipoles in the reflectarray cells have been optimized to produce a collimated beam in dual polarization in the transmit and receive bands. The measured radiation patterns confirm the high performance of the antenna in terms of bandwidth (27%), low losses, and low levels of cross polarization. Some preliminary simulations at 11.95 GHz for a 1.2-m antenna with South American coverage are presented to show the potential of the proposed antenna for spaceborne antennas in Ku-band.