972 resultados para Dual-MISTY structure
Resumo:
zhangdi于2010-03-29批量导入
Resumo:
该文对4轮MISTY和3轮双重MISTY两种结构进行了优化。在保持其安全性不变的情况下,把4轮MISTY结构中第1轮的伪随机置换,用一个XOR-泛置换代替,第2,第3轮采用相同的伪随机置换,3轮结构中第1轮的伪随机置换用XOR-泛置换代替,其它轮相同。伪随机置换的数量分别由原来的4个变为2个,3个变为1个,从而缩短了运行时间,节省了密钥量,大大降低了结构的实现成本。
Resumo:
In business literature, the conflicts among workers, shareholders and the management have been studied mostly in the frame of stakeholder theory. The stakeholder theory recognizes this issue as an agency problem, and tries to solve the problem by establishing a contractual relationship between the agent and principals. However, as Marcoux pointed out, the appropriateness of the contract as a medium to reduce the agency problem should be questioned. As an alternative, the cooperative model minimizes the agency costs by integrating the concept of workers, owners and management. Mondragon Corporation is a successful example of the cooperative model which grew into the sixth largest corporation in Spain. However, the cooperative model has long been ignored in discussions of corporate governance, mainly because the success of the cooperative model is extremely difficult to duplicate in reality. This thesis hopes to revitalize the scholarly examination of cooperatives by developing a new model that overcomes the fundamental problem in the cooperative model: the limited access to capital markets. By dividing the ownership interest into financial and control interest, the dual ownership structure allows cooperatives to issue stock in the capital market by making a financial product out of financial interest.
Resumo:
The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A 1.55-mu m ridge distributed feedback laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter (SSC) at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum-well intermixing, and dual-core technologies. These devices exhibit threshold current of 28 mA, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0-dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
A 1.55-mu m ridge DFB laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum well intermixing and dual-core technologies. These devices exhibit threshold current of 28 mA, side mode suppression ratio of 38.0 dB, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2 dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
This paper compares the effects on corporate performance and managerial self-dealing in a situation in which the CEO reports to a single Board that is responsible for both monitoring management and establishing performance targets to an alternative in which the CEO reports to two Boards, each responsible for a different task. The equilibrium set of the common agency game induced by the dual board structure is fully characterized. Compared to a single board, a dual board demands less aggressive performance targets from the CEO, but exerts more monitoring. A consequence of the first feature is that the CEO always exerts less effort toward production with a dual board. The effect of a dual board on CEO self-dealing is ambiguous: there are equilibria in which, in spite of the higher monitoring, self-dealing is higher in a dual system. The model indicates that the strategic interdependence generated by the assignment of different tasks to different boards may yield results that are far from the desired ones.
Resumo:
Multiple interlinked positive feedback loops shape the stimulus responses of various biochemical systems, such as the cell cycle or intracellular Ca2+ release. Recent studies with simplified models have identified two advantages of coupling fast and slow feedback loops. This dual-time structure enables a fast response while enhancing resistances of responses and bistability to stimulus noise. We now find that (1) the dual-time structure similarly confers resistance to internal noise due to molecule number fluctuations, and (2) model variants with altered coupling, which better represent some specific biochemical systems, share all the above advantages. We also develop a similar bistable model with coupling of a fast autoactivation loop to a slow loop. This model's topology was suggested by positive feedback proposed to play a role in long-term synaptic potentiation (LTP). The advantages of fast response and noise resistance are also present in this autoactivation model. Empirically, LTP develops resistance to reversal over approximately 1h . The model suggests this resistance may result from increased amounts of synaptic kinases involved in positive feedback.
Resumo:
Early propagation effect (EPE) is a critical problem in conventional dual-rail logic implementations against Side Channel Attacks (SCAs). Among previous EPE-resistant architectures, PA-DPL logic offers EPE-free capability at relatively low cost. However, its separate dual core structure is a weakness when facing concentrated EM attacks where a tiny EM probe can be precisely positioned closer to one of the two cores. In this paper, we present an PA-DPL dual-core interleaved structure to strengthen resistance against sophisticated EM attacks on Xilinx FPGA implementations. The main merit of the proposed structure is that every two routing in each signal pair are kept identical even the dual cores are interleaved together. By minimizing the distance between the complementary routings and instances of both cores, even the concentrated EM measurement cannot easily distinguish the minor EM field unbalance. In PA- DPL, EPE is avoided by compressing the evaluation phase to a small portion of the clock period, therefore, the speed is inevitably limited. Regarding this, we made an improvement to extend the duty cycle of evaluation phase to more than 40 percent, yielding a larger maximum working frequency. The detailed design flow is also presented. We validate the security improvement against EM attack by implementing a simplified AES co-processor in Virtex-5 FPGA.
Resumo:
Conventional dual-rail precharge logic suffers from difficult implementations of dual-rail structure for obtaining strict compensation between the counterpart rails. As a light-weight and high-speed dual-rail style, balanced cell-based dual-rail logic (BCDL) uses synchronised compound gates with global precharge signal to provide high resistance against differential power or electromagnetic analyses. BCDL can be realised from generic field programmable gate array (FPGA) design flows with constraints. However, routings still exist as concerns because of the deficient flexibility on routing control, which unfavourably results in bias between complementary nets in security-sensitive parts. In this article, based on a routing repair technique, novel verifications towards routing effect are presented. An 8 bit simplified advanced encryption processing (AES)-co-processor is executed that is constructed on block random access memory (RAM)-based BCDL in Xilinx Virtex-5 FPGAs. Since imbalanced routing are major defects in BCDL, the authors can rule out other influences and fairly quantify the security variants. A series of asymptotic correlation electromagnetic (EM) analyses are launched towards a group of circuits with consecutive routing schemes to be able to verify routing impact on side channel analyses. After repairing the non-identical routings, Mutual information analyses are executed to further validate the concrete security increase obtained from identical routing pairs in BCDL.
Resumo:
In this paper, we report the device characteristics of ambipolar thin-film transistors (TFTs) based on a diketopyrrolopyrrole-benzothiadiazole copolymer. This polymer semiconductor exhibits the largest comparable electron and hole mobility values in a single organic semiconductor. The key to realizing such high mobility values, which are $0.5&cm}{2}/\hbox{V}̇\hbox{s, is molecular design, i.e., the use of suitable surface treatments of the source/drain contact electrodes and device architectures, particularly top-gate configurations. The subthreshold characteristics of the TFT devices are greatly improved by the use of dual-gate device geometry. We also report the first measurement of the velocity distribution of electron and hole velocities in an ambipolar organic semiconductor.
Resumo:
We commend Swanenburg et al. (2013) on translation, development, and clinimetric analysis of the NDI-G. However, the dual-factor structure with factor analysis and the high level of internal consistency (IC) highlighted in their discussion were not emphasized in the abstract or conclusion. These points may imply some inconsistencies with the final conclusions since determination of stable point estimates with the study's small sample are exceedingly difficult.
Resumo:
Fundamental studies on a compact trapped vortex combustor indicate that cavity injection strategies play a major role on flame stability. Detailed experiments indicate that blow-out occurs for a certain range of cavity air flow velocities. An unsteady RANS-based reacting flow simulation tool has been utilized to study the basic dynamics of cavity vortex for various flow conditions. The phenomenon of flame blow-out at certain intermediate cavity air velocities is explained on the basis of transition from a cavity-stabilized mode to an opposed flow stagnation mode. A novel strategy is proposed for achieving flame stability at all conditions. This involves using a flow guide vane in the path of the main flow to direct a portion of the main flow into the cavity. This seems to result in a desirable dual vortex structure, i.e., a small clockwise vortex behind the vane and large counterclockwise vortex in the cavity. Experimental results show stable flame at all flow conditions with the flow guide vane, and pressure drop is estimated to be within acceptable limits. Cold flow simulations show self-similar velocity profiles for a range of main inlet velocities, and high reverse velocity ratios (-0.3) are observed. Such a high-velocity ratio in the reverse flow shear layer profile leads to enhanced production of turbulence imperative to compact combustors. Reacting flow simulations show even higher reverse velocity ratios (above -0.7) due to flow acceleration. The flame is observed to be stable, even though minor shear layer oscillations are present in the form of vortex shedding. Self-similarity is also observed in reacting flow temperature profiles at combustor exit over the entire range of the mainstream velocity. This indicates that the present configuration holds a promise of delivering robust performance invariant of the flow operating conditions.
Resumo:
The current work reports optical diagnostic measurements of fuel-air mixing and vortex structure in a single cavity trapped vortex combustor (TVC). Specifically, the mixture fraction using acetone PLIF technique in the non-reacting flow, and PIV measurements in the reacting flow are reported for the first time in trapped vortex combustors. The fuel-air momentum flux ratio, where the air momentum corresponds to that entering the cavity through a specially-incorporated flow guide vane, is used to characterize the mixing. The acetone PLIF experiments show that at high momentum flux ratios, the fuel-air mixing in the cavity is very minimal and is enhanced as the momentum flux ratio reduces, due to a favourable vortex formation in the cavity. Stoichiometric mixture fraction surfaces show that the mixing causes the reaction surfaces to shift from non-premixed to partially-premixed stratified mixtures. PIV measurements conducted in the non-reacting flow in the cavity further reinforce this observation. The scalar dissipation rates of mixture fraction were compared with the contours of RMS of fluctuating velocity and showed very good agreement. The regions of maximum mixing are observed to be along the fuel air interface. Reacting flow Ply measurements which differ substantially from the non-reacting cases primarily because of the heat release from combustion and the resulting gas expansion show that the vortex is displaced from the centre of the cavity towards the guide vane. Overall, the measurements show interesting features of the flow including the presence of the dual cavity structure and lead to a clear understanding of the underlying physics of the cavity flow highlighting the importance of the fuel-air momentum ratio parameter. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.