969 resultados para Dual phase steels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of high-martensite dual-phase (HMDP) steels exhibiting a 0.3 to 0.8 volume fraction of martensite (V m ), produced by intermediate quenching (IQ) of a vanadium and boron-containing microalloyed steel, have been studied for toughness and fatigue behavior to supplement the contents of a recent report by the present authors on the unusual tensile behavior of these steels. The studies included assessment of the quasi-static and dynamic fracture toughness and fatigue-crack growth (FCG) behavior of the developed steels. The experimental results show that the quasi-static fracturetoughness (K ICV ) increases with increasing V m in the range between V m =0.3 and 0.6 and then decreases, whereas the dynamic fracture-toughness parameters (K ID , K D , and J ID ) exhibit a significant increase in their magnitudes for steels containing 0.45 to 0.60 V m before achieving a saturation plateau. Both the quasi-static and dynamic fracture-toughness values exhibit the best range of toughnesses for specimens containing approximately equal amounts of precipitate-free ferrite and martensite in a refined microstructural state. The magnitudes of the fatigue threshold in HMDP steels, for V m between 0.55 and 0.60, appear to be superior to those of structural steels of a similar strength level. The Paris-law exponents (m) for the developed HMDP steels increase with increasing V m , with an attendant decrease in the pre-exponential factor (C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bake-hardening (BH) behavior of TRansformation Induced Plasticity (TRIP) and Dual-Phase (DP) steels after intercritical annealing (IA) has been studied using transmission electron microscopy, X-ray diffraction and three dimensional atom probe tomography. It was found for the DP steel that carbon can segregate to dislocations in the ferrite plastic deformation zones where there is a high dislocation density around the "asquenched" martensite. The carbon pinning of these dislocations, in turn, increases the yield strength after aging. It was shown that bake-hardening also leads to rearrangement of carbon in the martensite leading to the formation of rod-like low temperature carbides in the DP steel. Segregation of carbon to microtwins in retained austenite of the TRIP steel was also evident. These factors, in combination with the dislocation rearrangement in ferrite through the formation of cells and microbands in the TRIP steel after pre-straining, lead to the different bake-hardening responses of the two steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research deals with processes leading to local strengthening effects in hot-rolled dual-phase (DP) steels. For this purpose, a method was investigated to achieve local strengthening, namely, local laser heat treatment (LHT). DP sheet steels were globally and homogenously deformed with different degrees of prestrains by cold rolling and subsequently locally heat treated by laser. Following this treatment with selected parameters, the microstructure of the surface and cross section of the heat-treated area as well as the mechanical properties were evaluated by light optical microscopy (LOM), scanning electron microscopy (SEM), as well as transmission electron microscopy (TEM), hardness measurement, and tensile testing. It can be stated that with partial heat treatment, local high strengthening can be produced. At lower heat treating temperatures, this effect could be attributed to bake hardening (BH). Increasing the prestrain as well as temperature results in improving the local properties. With increased heat treating temperature, the initial microstructure near the surface is affected. Partial strengthening of DP steels by laser can open up new fields of application for locally using the strengthening effect to only influence relevant areas of interest, thus providing the potential for saving energy and designed the component's behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deformation and fracture characteristics of a low carbon Si–Mn steel with ferrite/bainite dualphase structure were investigated by thermo–mechanical controlled process (TMCP). The results showed that the curves of the instantaneous work–hardening factor n* value versus true strain ε are made up with three stages during uniform plastic deformation: n* value is relatively higher at stage I, decreases slowly with ε in stage II, and then decreases quickly with ε in stage III. Compared tothe equiaxed ferrite/bainite dualphase steel, the quasi–polygonal ferrite/bainite dualphase steel shows higher tensile strength and n*value in the low strain region. The voids or micro–cracks formed not only at ferrite–bainite interfaces but also within ferrite grains in the necked region, which can improve the property of resistance to crack propagation by reducing local stress concentration of the crack tips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of Si and Mn contents on microstructure, mechanical properties and formability of low carbon Si-Mn steels were studied, and the crack propagation of ferrite/bainite dual-phase steel was also investigated. The results showed that the increase in Si content increases the volume fraction of equiaxed ferrite. However, the increase in Mn content increases both strength and ductility, but decreases elongation and hole-expanding ratio. The crack of ferrite/bainite dual-phase steel is formed by the mode of microvoid coalescence. When a microcrack meets the bainite, it mostly propagates along the phase interface between ferrite and bainite and by cutting off ferrite grains. The hot-rolled ferrite/bainite dual-phase steel, which has a hole-expanding ratio of 95% and good property combination, could be produced by designing proper contents of Si and Mn as well as parameters of TMCP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the thermo-mechanical controlled process, the effects of Si on microstructural evolution, tensile properties, impact toughness, and stretch-flangeability of ferrite and bainite dual-phase (FBDP) steels were systematically investigated. The addition of Si from 0 to 0.95% promoted the formation of fine and equiaxed ferrite grains, and high Si (0.95%) also resulted in the formation of blocky martensite islands and retained austenite. Yield and tensile strengths, and uniform and total elongations all increased with increasing Si content. Therefore, the tensile strength and ductility balance was improved by Si addition due to the increasing strain-hardening rate. The fractured morphologies after hole-expansion showed that the excellent stretch-flangeability of FBDP steels was associated with the micro-cracks propagating through in ferrite phase as well as the elongated ferrite grains along the direction perpendicular to the crack. 0.95% Si steel had a similar high combination of tensile strength and impact toughness to 0.55% Si steel, and especially 0.95% Si steel exhibited an excellent combination of tensile strength and stretch-flangeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale modelling of stress and strain partitioning in DP steel was carried out using both realistic microstructure-based RVE models as well as stochastic microstructures generated by Monte Carlo method. The stochastic microstructure models were shown to resemble that of realistic microstructures, enabling research on the specific aspects of the microstructure that could be difficult to control and study during experimental work. One such feature of the realistic microstructures studied in this work was the grain size and microstructure morphology. The microstructures were generated with varying average grain sizes while all other parameters, such as boundary conditions, material properties and volume fractions of martensite and ferrite were kept constant. It is found that the effect of grain size is much more pronounced during the initial localisation of the plastic deformation at and around the interface of the phases. In addition, the decrease in ductility and increase in strength of the DP steels are directly related to the refinement of grain sizes of each phase and the stress-strain partitioning in between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tempering has been used as a method to develop a range of dual phase steels with the same martensite morphology and volume fraction, but containing phases with different relative strengths. These steels were used to examine the strain partitioning between the two constituent phases experimentally through mechanical testing and numerically through finite element modelling. It was found that increasing the differential in strength between the two phases not only produces regions of high strain, but also regions of low strain. On average, a larger difference in strength between the phases increased the strain carried by the softer phase. There was no discernible preferential strain localisation to the ferrite/martensite interface, with the regions of strain localisation being determined by the morphology of the microstructure. A direct correlation between the average strain in the ferrite, and the measured ductility has been found. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite volume fractions has been investigated, with particular focus on fatigue life, cyclic hardening/softening behaviour and microstructural evolution. DP steels with martensite volume fractions between 13% and 88% were produced and their monotonic and cyclic deformation behaviours evaluated. The LCF life has been examined in depth and compared with published literature. It has been concluded that, once normalised for plastic strain amplitude, the fatigue life was found to be significantly reduced by an increase in the martensite volume fraction. All alloys were observed to show some initial cyclic hardening followed by cyclic softening. Clear sub-cell formation occurred in ferrite grains irrespective of the martensite volume fraction, and it is suggested that this cell formation and martensite softening are responsible for the cyclic softening behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite morphologies has been investigated in the present work. DP steels with coarse martensite morphologies show inferior LCF life in comparison with fine martensite morphologies for all martensite volume fractions examined. It is suggested that this is be due to the development of larger local plastic strain concentrations in the ferrite with a coarser microstructure, compared to the finer microstructural morphology. Fatigue cracks were observed to initiate inside ferrite grains, and to preferentially propagate through the softer ferrite phase. The average sub-cell size was finer in samples with higher martensite volume fractions, but the sub-cell size was almost unaffected by the martensite morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation has been conducted to examine the morphological influence on fatigue life of low carbon steel with dual phase microstructure. The results showed that dual-phase microstructure, composed by ferrite and martensite had superior symmetrical bending fatigue strength when compared with ferrite-pearlite steel. Through those tests, evidences of different mechanisms were verified (such as ferrite cyclic hardening, slip band formation and beginning of crack nucleation and propagation). Based on the fatigue tests results, various mechanisms stages were discussed associated with different microstructure morphology. Copyright (C) 1996 Published by Elsevier B.V. Limited.