948 resultados para Dual phase (DP) steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of volume fraction and hardness of martensite on the Bauschinger effect in Dual Phase (DP) steel was investigated for strain levels close to those observed in automotive stamping. Five different grades of DP steel were produced by controlled heat treatment allowing the examination of the Bauschinger effect for three different volume fractions of martensite and three levels of martensite hardness. Compression-tension and shear reversal tests were performed to examine the Bauschinger effect at high levels of forming strain. Good correlation between the shear reversal and the compression-tension test was observed suggesting that for DP steel, shear stress strain data, converted to equivalent stress-strain, may be applied directly to characterize kinematic hardening behavior for numerical simulations. Permanent softening was observed following strain reversal and increased with martensite volume fraction and pre-strain level. While the Bauschinger ratio saturates at 3% pre-strain, the Bauschinger strain increases linearly with forming strain without showing saturation. This suggests that to model material behavior accurately in forming processes involving complex loading paths and high levels of strain, test data generated at high strain is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent experiment confirmed that the infrared (IR) local heating method drastically reduces springback of dual-phase (DP) 980 sheets. In the experiment, only the plastic deformation zone of the sheets was locally heated using condensed IR heating. The heated sheets were then deformed by V-bending or 2D-draw bending. Although the experimental observation proved the merit of using the IR local heating to reduce springback, numerical modeling has not been reported. Numerical modeling has been required to predict springback and improve the understanding of the forming process. This paper presents a numerical modeling for V-bending and 2D-draw bending of DP 980 sheets exposed to the IR local heating with the finite element method (FEM). For describing the thermo-mechanical behavior of the DP 980 sheet, a flow stress model which includes a function of temperature and effective plastic strain was newly implemented into Euler-backward stress integration method. The numerical analysis shows that the IR local heating reduces the level of stress in the deformation zone, although it heats only the limited areas, and then it reduces the springback. The simulation also provides a support that the local heating method has an advantage of shape accuracy over the method to heat the material as a whole in V-bending. The simulated results of the springback in both V-bending and 2D-draw bending also show good predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite volume fractions has been investigated, with particular focus on fatigue life, cyclic hardening/softening behaviour and microstructural evolution. DP steels with martensite volume fractions between 13% and 88% were produced and their monotonic and cyclic deformation behaviours evaluated. The LCF life has been examined in depth and compared with published literature. It has been concluded that, once normalised for plastic strain amplitude, the fatigue life was found to be significantly reduced by an increase in the martensite volume fraction. All alloys were observed to show some initial cyclic hardening followed by cyclic softening. Clear sub-cell formation occurred in ferrite grains irrespective of the martensite volume fraction, and it is suggested that this cell formation and martensite softening are responsible for the cyclic softening behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite morphologies has been investigated in the present work. DP steels with coarse martensite morphologies show inferior LCF life in comparison with fine martensite morphologies for all martensite volume fractions examined. It is suggested that this is be due to the development of larger local plastic strain concentrations in the ferrite with a coarser microstructure, compared to the finer microstructural morphology. Fatigue cracks were observed to initiate inside ferrite grains, and to preferentially propagate through the softer ferrite phase. The average sub-cell size was finer in samples with higher martensite volume fractions, but the sub-cell size was almost unaffected by the martensite morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate View the MathML sourcewhen plotted against the effective stress intensity factor range View the MathML source which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high View the MathML source corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor View the MathML source, however, is affected by the ferrite content with View the MathML source reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.

Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the View the MathML source ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the View the MathML source data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of prestraining (PS) and bake hardening (BH) on the microstructures and mechanical properties has been studied in transformation-induced plasticity (TRIP) and dual-phase (DP) steels after intercritical annealing. The DP steel showed an increase in the yield strength and the appearance of the upper and lower yield points after a single BH treatment as compared with the as-received condition, whereas the mechanical properties of the TRIP steel remained unchanged. This difference appears to be because of the formation of plastic deformation zones with high dislocation density around the “as-quenched” martensite in the DP steel, which allowed carbon to pin these dislocations, which, in turn, increased the yield strength. It was found for both steels that the BH behavior depends on the dislocation rearrangement in ferrite with the formation of cell, microbands, and shear band structures after PS. The strain-induced transformation of retained austenite to martensite in the TRIP steel contributes to the formation of a complex dislocation structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bake-hardening (BH) behavior of TRansformation Induced Plasticity (TRIP) and Dual-Phase (DP) steels after intercritical annealing (IA) has been studied using transmission electron microscopy, X-ray diffraction and three dimensional atom probe tomography. It was found for the DP steel that carbon can segregate to dislocations in the ferrite plastic deformation zones where there is a high dislocation density around the "asquenched" martensite. The carbon pinning of these dislocations, in turn, increases the yield strength after aging. It was shown that bake-hardening also leads to rearrangement of carbon in the martensite leading to the formation of rod-like low temperature carbides in the DP steel. Segregation of carbon to microtwins in retained austenite of the TRIP steel was also evident. These factors, in combination with the dislocation rearrangement in ferrite through the formation of cells and microbands in the TRIP steel after pre-straining, lead to the different bake-hardening responses of the two steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dual Phase (DP) steel one of the Advanced High Strength Steels (AHSS) has a two phase microstructure where soft and hard phase acts together to offer a high strength composite effect. The high strength, however, must be balanced with ductility so that complex parts and designs can be manufactured from AHSS sheets. However, during forming certain grades of DP steel a sudden crack can occur without any intimation of necking. Thus, due to this abnormal forming behaviour, is difficult to accurately predict because most classical modelling approaches are not designed for such micro-structurally heterogeneous materials. These modelling approaches are generally based on an average representation of the material behaviour in a continuum mechanics formulation. This works for materials that are homogenous, or at least could be assumed to be homogenous at scales lower than the naked eye can see. However, for a material like AHSS, the microstructure plays a significant role in dictating the mechanical behaviour at the macro-scale. This paper studies the multi-scale modelling ofDP590 steel. It is found that the sufficient accuracy can be achieved from multi-scale modelling while comparing with the experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced high strength steel sheets are one of the higher strength advance material developed by the steel industry for automotive bodies. One of the categories of this advanced high strength steel is Dual Phase (DP) steel. This steel consists of a two phase microstructure where soft and hard phase acts together to offer a high strength composite effect. The combination of high strength and ductility exhibited by these sheets allows the design and manufacture of complex parts. However, during forming certain grades of DP steel sudden cracking can occur without any intimation of necking. This abnormal forming behavior is difficult to accurately predict because most classical modelling approaches are not designed for such micro-structurally heterogeneous materials. These modelling approaches are generally based on an average representation of the material behaviour in a continuum mechanics formulation. This works for materials that are homogenous, or at least could be assumed to be homogenous at scales lower than the naked eye can see. However, for a material like advanced high strength steel, the microstructure plays a significant role in dictating the mechanical behavior at the macro-scale. This paper studies the forming and fracture behavior through multi-scale modeling of DPO590 steel. It is found that the sufficient accuracy can be achieved from multi-scale modeling when comparing with experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset is comprised of a spreadsheet of simulation result files, cross-section geometries of stamped parts, strain results of cross-section of stamped parts, simulation data (strain stress displacement energies), and variation data of material properties of a single coil. This data is a collection of both experimental and simulation results from industrial and laboratory stamping of advanced high strength steels (AHSS). The steels that were stamped were a typical high-strength low-alloy (HSLA) steel, a transformation-induced plasticity (TRIP) steel, a super HSLA steel, and a dual phase (DP) steel. The selected part was an automatic Ford Falcon front cross-member component using the Ford Geelong stamping plant. The variation of the material and stamped parts was also collected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research deals with processes leading to local strengthening effects in hot-rolled dual-phase (DP) steels. For this purpose, a method was investigated to achieve local strengthening, namely, local laser heat treatment (LHT). DP sheet steels were globally and homogenously deformed with different degrees of prestrains by cold rolling and subsequently locally heat treated by laser. Following this treatment with selected parameters, the microstructure of the surface and cross section of the heat-treated area as well as the mechanical properties were evaluated by light optical microscopy (LOM), scanning electron microscopy (SEM), as well as transmission electron microscopy (TEM), hardness measurement, and tensile testing. It can be stated that with partial heat treatment, local high strengthening can be produced. At lower heat treating temperatures, this effect could be attributed to bake hardening (BH). Increasing the prestrain as well as temperature results in improving the local properties. With increased heat treating temperature, the initial microstructure near the surface is affected. Partial strengthening of DP steels by laser can open up new fields of application for locally using the strengthening effect to only influence relevant areas of interest, thus providing the potential for saving energy and designed the component's behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work focuses on simulation of nonlinear mechanical behaviors of adhesively bonded DLS (double lap shear) joints for variable extension rates and temperatures using the implicit ABAQUS solver. Load-displacement curves of DLS joints at nine combinations of extension rates and environmental temperatures are initially obtained by conducting tensile tests in a UTM. The joint specimens are made from dual phase (DP) steel coupons bonded with a rubber-toughened adhesive. It is shown that the shell-solid model of a DLS joint, in which substrates are modeled with shell elements and adhesive with solid elements, can effectively predict the mechanical behavior of the joint. Exponent Drucker-Prager or Von Mises yield criterion together with nonlinear isotropic hardening is used for the simulation of DLS joint tests. It has been found that at a low temperature (-20 degrees C), both Von Mises and exponent Drucker-Prager criteria give close prediction of experimental load-extension curves. However. at a high temperature (82 degrees C), Von Mises condition tends to yield a perceptibly softer joint behavior, while the corresponding response obtained using exponent Drucker-Prager criterion is much closer to the experimental load-displacement curve.