939 resultados para Drying apparatus


Relevância:

70.00% 70.00%

Publicador:

Resumo:

"Originally issued in an edition of 30 copies as a confidential report of the National Defense Research Committee, Office of Scientific Research and Development."

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The literature on heat and mass transfer mechanisms in the convective drying of thick beds of solids has been critically reviewed. Related mathematical models of heat transfer are also considered. Experimental and theoretical studies were made of the temperature distribution within beds, and of drying rates, with various materials undergoing convective drying. The experimental work covered thick beds of hygroscopic and non-hygroscopic materials (glass beads of different diameters, polystyrene pellets, activated alumina and wood powder) at air temperatures of 54°C to 84°C. Tests were carried out in a laboratory drying apparatus comprising a wind tunnel through which the air, of controlled temperature and humidity, was passed over a sample suspended from a balance. Thermocouples were inserted at different depths within the sample bed. The temperature distribution profiles for both hygroscopic and non-hygroscopic beds exhibited a clear difference between the temperatures at the surface and bottom during the constant rate period. An effective method was introduced for predicting the critical moisture content. During the falling rate the profiles showed the existence of a receding evaporation plane; this divided the system into a hotter dry zone in the upper section and a wet zone near the bottom. A graphical procedure was established to predict accurately the position of the receding evaporation front at any time. A new mathematical model, based on the receding evaporation front phenomenon, was proposed to predict temperature distributions throughout a bed during drying. Good agreement was obtained when the model was validated by comparing its predictions with experimental data. The model was also able to predict the duration of each drying stage. In experiments using sample trays of different diameters, the drying rate was found to increase with a decrease in the effective length of the bed surface. During the constant rate period with trays of a small effective length, i.e. less than 0.08 m, an 'inversion' in temperature distribution occurred in the bed; the bottom temperature increased and became greater than that of the surface. Experimental measurements were verified in several ways to ensure this phenomenon was real. Theoretical explanations are given for both the effective length and temperature inversion phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a solar drying system for food dehydration was developed. It is a direct exposition drying apparatus that uses solar energy to heat the circulating air. First, the construction and assembly of this apparatus was described, in which was used scrap wraps of used tires for thermal insulation, allowing the reuse of solid waste, being an ecologically correct recycling option. After, the results obtained in experiments for cashew drying showed the thermal and economical feasibility of the proposed solar drying system, focusing on the process of flour production and in its chemical characterization. It was also demonstrated the social importance of this production for socially excluded people, since the value added to this fruit, in relation to its in nature form, may represent an option for job and income generation. The main features of the proposed dryer are its low cost and its easy fabrication and assembly process. After cashew drying, the obtained product was processed into flour by using a knife mill and it was added crushed rapadura to reduce the rancid taste caused by tannin

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of applying unsaturated soil mechanics to geotechnical engineering design has been well understood. However, the consumption of time and the necessity for a specific laboratory testing apparatus when measuring unsaturated soil properties have limited the application of unsaturated soil mechanics theories in practice. Although methods for predicting unsaturated soil properties have been developed, the verification of these methods for a wide range of soil types is required in order to increase the confidence of practicing engineers in using these methods. In this study, a new permeameter was developed to measure the hydraulic conductivity of unsaturated soils using the steady-state method and directly measured suction (negative pore-water pressure) values. The apparatus is instrumented with two tensiometers for the direct measurement of suction during the tests. The apparatus can be used to obtain the hydraulic conductivity function of sandy soil over a low suction range (0-10 kPa). Firstly, the repeatability of the unsaturated hydraulic conductivity measurement, using the new permeameter, was verified by conducting tests on two identical sandy soil specimens and obtaining similar results. The hydraulic conductivity functions of the two sandy soils were then measured during the drying and wetting processes of the soils. A significant hysteresis was observed when the hydraulic conductivity was plotted against the suction. However, the hysteresis effects were not apparent when the conductivity was plotted against the volumetric water content. Furthermore, the measured unsaturated hydraulic conductivity functions were compared with predictions using three different predictive methods that are widely incorporated into numerical software. The results suggest that these predictive methods are capable of capturing the measured behavior with reasonable agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were conducted to show the effect of different temperatures in the drying process on the amount and quality of essential oils of Cymbopogon citratus (DC) Stapf. Leaves were harvested in the experimental field of the Agronomical Sciences College, UNESP, Botucatu, SP, Brazil in September, 1996. Blades of the leaves were cut in small parts (about 1-1,5 cm length), dried for several days at 30°, 50°, 70° and 90°C, until establishment of the weights. In the following process a hydrodistillation, during 2.5 hours, by Clevenger apparatus, was subsidized to extract the essential oils. A higher amount of oil could clearly be collected with the lower drying temperatures, except at 30°C, affected by fungus growing. Aspergillus sp., Penicillium sp., Rhyzopus sp., Cladosporium sp., Trichoderma sp. and Alternaria sp. were observed in the leaves. The analysis of the oil by GC-MS showed the variation of citral concentration of the treatments (86,1 to 95,2%). The results proved it is worthwhile to spend more time and effort in the production process using longer times of careful drying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies were conducted to show the effect of different temperatures in the drying process on the amount and quality of essential oils of peppermint (Mentha piperita L.) The leaves were harvested in the Demeter Farmer, Botucatu, SP, Brazil in december, 1997. The leaves were dried at 40°C, 60°C and 80°C, until establishment of the weights. The essential oil was extracted by destilation in Clevenger apparatus and analysed by GC-MS. Higher drying temperature sharply decreased the essential oil content (% v/w) from 1.0% (40°C) to 0.14% (60°C) and 0.12% (80°C). Higher drying temperatures also affected the composition, decreasing the contents of 1,8 cineol and citronelal until 80°C, and increasing the contents of menthol and neomenthol until 60°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive review of literature has been carried out concerning the drying of single drops, sprays of droplets and the prediction of spray drier performances. The experimental investigation has been divided into two broad parts mainly: (1) Single Drop Experiments, and (2) Spray Drying and Residence Time Distribution Experiments. The thermal conductivity of slurry cakes from five different sources have been experimentally determined using a modified Lee's Disc Apparatus and the data collected was correlated by the polynominal... Good agreement was observed between the experimental thermal conductivity values and the predicted ones. The fit gave a variance ... for the various samples experimented on. A mathematical model for estimating crust mass transfer coefficient at high drying temperatures was derived.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of moist cylindrical shaped food particulates during fluidised bed drying. Cylindrical particles were prepared from Green beans with three different length:diameter ratios, 3:1, 2:1 and 1:1. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in fluidization behaviour behaviour was characterised for parallelepiped particles with three aspect ratios, 1:1, 2:1 and 3:1 and spherical particles. All drying experiments were conducted at 500C and 15 % RH using a heat pump dehumidifier system. Fluidization experiments were undertaken for the bed heights of 100, 80, 60 and 40 mm and at 10 moisture content levels. Due to irregularities in shape minimum fluidisation velocity of parallelepiped particulates (potato) could not fitted to any empirical model. Also a generalized equation was used to predict minimum fluidization velocity. The modified quasi-stationary method (MQSM) has been proposed to describe drying kinetics of parallelepiped particulates at 30o C, 40o C and 50o C that dry mostly in the falling rate period in a batch type fluid bed dryer.