1000 resultados para Drug Approval
Resumo:
Withdrawals of high-profile pharmaceuticals have focused attention on post-approval safety surveillance. There have been no systematic assessments of spending on postapproval safety. We surveyed drug manufacturers regarding safety efforts. Mean spending on postapproval safety per company in 2003 was 56 million dollars (0.3 percent of sales). Assuming a constant safety-to-sales ratio, we estimated that total spending on postapproval safety by the top twenty drug manufacturers was 800 million dollars in 2003. We also examined, using regression analysis, the relationship between the number of safety personnel and the number of initial adverse-event reports. This study offers information for the debate on proposed changes to safety surveillance.
Resumo:
PURPOSE: Review existing studies and provide new results on the development, regulatory, and market aspects of new oncology drug development. METHODS: We utilized data from the US Food and Drug Administration (FDA), company surveys, and publicly available commercial business intelligence databases on new oncology drugs approved in the United States and on investigational oncology drugs to estimate average development and regulatory approval times, clinical approval success rates, first-in-class status, and global market diffusion. RESULTS: We found that approved new oncology drugs to have a disproportionately high share of FDA priority review ratings, of orphan drug designations at approval, and of drugs that were granted inclusion in at least one of the FDA's expedited access programs. US regulatory approval times were shorter, on average, for oncology drugs (0.5 years), but US clinical development times were longer on average (1.5 years). Clinical approval success rates were similar for oncology and other drugs, but proportionately more of the oncology failures reached expensive late-stage clinical testing before being abandoned. In relation to other drugs, new oncology drug approvals were more often first-in-class and diffused more widely across important international markets. CONCLUSION: The market success of oncology drugs has induced a substantial amount of investment in oncology drug development in the last decade or so. However, given the great need for further progress, the extent to which efforts to develop new oncology drugs will grow depends on future public-sector investment in basic research, developments in translational medicine, and regulatory reforms that advance drug-development science.
Resumo:
The research and development costs of 68 randomly selected new drugs were obtained from a survey of 10 pharmaceutical firms. These data were used to estimate the average pre-tax cost of new drug development. The costs of compounds abandoned during testing were linked to the costs of compounds that obtained marketing approval. The estimated average out-of-pocket cost per new drug is 403 million US dollars (2000 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a real discount rate of 11% yields a total pre-approval cost estimate of 802 million US dollars (2000 dollars). When compared to the results of an earlier study with a similar methodology, total capitalized costs were shown to have increased at an annual rate of 7.4% above general price inflation.
Resumo:
BACKGROUND: Many medicines used in newborns, infants, children and adolescents are not licensed ("unlicensed") or are prescribed outside the terms of the marketing authorization ("off-label"). Several studies have shown that this is a common practice in various healthcare settings in the USA, Europe and Australia, but data are scarce in Switzerland. OBJECTIVES: The aim of our prospective study was to determine the proportion of unlicensed or off-label prescriptions in paediatric patients. METHODS: This pilot study was conducted prospectively over a six month period in the department of paediatrics of a university hospital. RESULTS: Sixty patients aged from three days to 14 years were included in the study. A total of 483 prescriptions were written for the patients. More than half of all prescriptions (247; 51%) followed the terms of the marketing authorization. 114 (24%) were unlicensed and 122 (25%) off-label. All patients received at least one unlicensed or offlabel medicine. CONCLUSION: The use of unlicensed or off-label medicines to treat children was found to be common. Co-operation between the pharmaceutical industry, national regulatory authorities, clinical researchers, healthcare professionals and parents is required in order to ensure that children do not remain "therapeutic orphans".
Resumo:
Objectives: To assess the relation between the number of clinical trials conducted and respective new drug approvals in India and South Africa. Design: Construction and analysis of a comprehensive database of completed randomised controlled clinical trials based on clinicaltrials.gov from 1 January 2005 to 31 December 2010 and drug approval data from 2006 until 2013 for India and South Africa. Setting: USA, the EU, India and South Africa. Main outcome measures: Percentage of completed randomised clinical trials for an Investigational Medicinal Product (IMP) leading to new drug approval in India and South Africa. Results: A total of 622 eligible randomised controlled trials were identified as per search criteria for India and South Africa. Clustering them for the same sponsor and the same Investigational New Drug (IND) resulted in 453 eligible trials, that is, 224 for India and 229 for South Africa. The distribution of the market application approvals between the EU/USA as well as India and South Africa revealed that out of clinical trials with the participation of test centres in India and/or South Africa, 39.6% (India) clinical trials and 60.1% (South Africa) clinical trials led to market authorisation in the EU/USA without a New Drug Application (NDA) approval in India or South Africa. Conclusions: Despite an increase in clinical trial activities, there is a clear gap between the number of trials conducted and market availability of these new drugs in India and South Africa. Drug regulatory authorities, investigators, institutional review boards and patient groups should direct their efforts to ensuring availability of new drugs in the market that have been tested and researched on their population.
Resumo:
CONTEXT: In 1997, Congress authorized the US Food and Drug Administration (FDA) to grant 6-month extensions of marketing rights through the Pediatric Exclusivity Program if industry sponsors complete FDA-requested pediatric trials. The program has been praised for creating incentives for studies in children and has been criticized as a "windfall" to the innovator drug industry. This critique has been a substantial part of congressional debate on the program, which is due to expire in 2007. OBJECTIVE: To quantify the economic return to industry for completing pediatric exclusivity trials. DESIGN AND SETTING: A cohort study of programs conducted for pediatric exclusivity. Nine drugs that were granted pediatric exclusivity were selected. From the final study reports submitted to the FDA (2002-2004), key elements of the clinical trial design and study operations were obtained, and the cost of performing each study was estimated and converted into estimates of after-tax cash outflows. Three-year market sales were obtained and converted into estimates of after-tax cash inflows based on 6 months of additional market protection. Net economic return (cash inflows minus outflows) and net return-to-costs ratio (net economic return divided by cash outflows) for each product were then calculated. MAIN OUTCOME MEASURES: Net economic return and net return-to-cost ratio. RESULTS: The indications studied reflect a broad representation of the program: asthma, tumors, attention-deficit/hyperactivity disorder, hypertension, depression/generalized anxiety disorder, diabetes mellitus, gastroesophageal reflux, bacterial infection, and bone mineralization. The distribution of net economic return for 6 months of exclusivity varied substantially among products (net economic return ranged from -$8.9 million to $507.9 million and net return-to-cost ratio ranged from -0.68 to 73.63). CONCLUSIONS: The economic return for pediatric exclusivity is variable. As an incentive to complete much-needed clinical trials in children, pediatric exclusivity can generate lucrative returns or produce more modest returns on investment.
Resumo:
Infectious and parasitic diseases create enormous health burdens, but because most of the people suffering from these diseases are poor, little is invested in developing treatments. We propose that developers of treatments for neglected diseases receive a "priority review voucher." The voucher could save an average of one year of U.S. Food and Drug Administration (FDA) review and be sold by the developer to the manufacturer of a blockbuster drug. In a well-functioning market, the voucher would speed access to highly valued treatments. Thus, the voucher could benefit consumers in both developing and developed countries at relatively low cost to the taxpayer.
Resumo:
With the lifetime risk of being diagnosed with prostate cancer so great, an effective chemopreventive agent could have a profound impact on the lives of men. Despite decades of searching for such an agent, physicians still do not have an approved drug to offer their patients. In this article, we outline current strategies for preventing prostate cancer in general, with a focus on the 5-α-reductase inhibitors (5-ARIs) finasteride and dutasteride. We discuss the two landmark randomized, controlled trials of finasteride and dutasteride, highlighting the controversies stemming from the results, and address the issue of 5-ARI use, including reasons why providers may be hesitant to use these agents for chemoprevention. We further discuss the recent US Food and Drug Administration ruling against the proposed new indication for dutasteride and the change to the labeling of finasteride, both of which were intended to permit physicians to use the drugs for chemoprevention. Finally, we discuss future directions for 5-ARI research.
Resumo:
In Brazil, the registration of new drugs is carried out only when the regulatory agency (Anvisa, acronym in Portuguese) is fully satisfied with the evidence of their quality, efficacy and safety, presented by a pharmaceutical industry that strive for this registration. With the patent expiration, pharmaceutical companies are attracted to produce biological medicines called biosimilar or biogenerics or simply generics, whose approval may result in reduced treatment costs. But it is necessary that the biosimilar be, at least, equally efective and safe and without contaminants in relation to the original. Recent consensus guidelines aim to establish criteria for efcacy and safety of these medicines. Preclinical studies in vitro and in vivo, the origin of raw materials and clinical studies phase I, II and III are recommended for biosimilar medicine registration in the international market. Low molecular weight heparins are found in this situation. In this review we specifcally addressed this type of medicine, which could serve as a benchmark for other biosimilar medicines.
Resumo:
Deposition and clearance studies are used during product development and in fundamental research. These studies mostly involve radionuclide imaging, but pharmacokinetic methods are also used to assess the amount of drug absorbed through the lungs, which is closely related to lung deposition. Radionuclide imaging may be two-dimensional (gamma scintigraphy or planar imaging), or three-dimensional (single photon emission computed tomography and positron emission tomography). In October 2009, a group of scientists met at the "Thousand Years of Pharmaceutical Aerosols" conference in Reykjavik, Iceland, to discuss future research in key areas of pulmonary drug delivery. This article reports the session on "Deposition, imaging and clearance." The objective was partly to review our current understanding, but more importantly to assess "what remains to be done?" A need to standardize methodology and provide a regulatory framework by which data from radionuclide imaging methods could be compared between centers and used in the drug approval process was recognized. There is also a requirement for novel radiolabeling methods that are more representative of production processes for dry powder inhalers and pressurized metered dose inhalers. A need was identified for studies to aid our understanding of the relationship between clinical effects and regional deposition patterns of inhaled drugs. A robust methodology to assess clearance from small conducting airways should be developed, as a potential biomarker for therapies in cystic fibrosis and other diseases. The mechanisms by which inhaled nanoparticles are removed from the lungs, and the factors on which their removal depends, require further investigation. Last, and by no means least, we need a better understanding of patient-related factors, including how to reduce the variability in pulmonary drug delivery, in order to improve the precision of deposition and clearance measurements.
Resumo:
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing (bio)equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate (FWER) using TOST is given. This condition then leads to a simple solution for controlling the FWER. Specifically, we demonstrate that if all pairwise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.
Resumo:
The field of transport biology has steadily grown over the past decade and is now recognized as playing an important role in manifestation and treatment of disease. The SLC (solute carrier) gene series has grown to now include 52 families and 395 transporter genes in the human genome. A list of these genes can be found at the HUGO Gene Nomenclature Committee (HGNC) website (see www.genenames.org/genefamilies/SLC). This special issue features mini-reviews for each of these SLC families written by the experts in each field. The existing online resource for solute carriers, the Bioparadigms SLC Tables (www.bioparadigms.org), has been updated and significantly extended with additional information and cross-links to other relevant databases, and the nomenclature used in this database has been validated and approved by the HGNC. In addition, the Bioparadigms SLC Tables functionality has been improved to allow easier access by the scientific community. This introduction includes: an overview of all known SLC and "non-SLC" transporter genes; a list of transporters of water soluble vitamins; a summary of recent progress in the structure determination of transporters (including GLUT1/SLC2A1); roles of transporters in human diseases and roles in drug approval and pharmaceutical perspectives.
Resumo:
From the Introduction. The pharmaceutical sector inquiry carried out by the European Commission in 2008 provides a useful framework for assessing the relationship between the patent system on the one hand and competition policy and law on the other hand. The pharmaceutical market is not only specifically regulated. It is also influenced by the special characteristics of the patent system which enables pharmaceutical companies engaged in research activities to enter into additional arrangements to cope with the competitive pressures of early patent application and the delays in drug approval. Patents appear difficult to reconcile with the need for sufficient and adequate access to medicines, which is why competition expectations imposed on the pharmaceutical sector are very high. The patent system and competition law are interacting components of the market, into which they must both be integrated. This can result in competition law taking a very strict view on the pharmaceutical industry by establishing strict functional performance standards for the reliance on intellectual property rights protection granted by patent law. This is in particular because in this sector the potential welfare losses are not likely to be of only monetary nature. In brief, the more inefficiencies the patent system produces, the greater the risk of an expansive application of competition law in this field. The aim of the present study is to offer a critical and objective view on the use or abuse of patents and defensive strategies in the pharmaceutical industry. It shall also seek to establish whether patents as presently regulated offer an appropriate degree of protection of intellectual property held by the economic operators in the pharmaceutical sector and whether there is a need or, for that matter, scope for improvement. A useful starting point for the present study is provided by the pharmaceutical sector competition inquiry (hereafter “the sector inquiry”) carried out by the European Commission during the first half of 2008. On 8 July 2008, the Commission adopted its Final Report pursuant to Article 17 of Regulation 1/2003 EC, revealing a series of “antitrust shortcomings” that would require further investigation1.
Resumo:
Low-molecular-weight heparins (LMWHs) have shown equivalent or superior efficacy and safety to unfractionated heparin as antithrombotic therapy for patients with acute coronary syndromes. Each approved LMWH is a pleotropic biological agent with a unique chemical, biochemical, biophysical and biological profile and displays different pharmacodynamic and pharmacokinetic profiles. As a result, LMWHs are neither equipotent in preclinical assays nor equivalent in terms of their clinical efficacy and safety. Previously, the US Food and Drug Administration (FDA) cautioned against using various LMWHs interchangeably, however recently, the FDA approved generic versions of LMWH that have not been tested in large clinical trials. This paper highlights the bio-chemical and pharmacological differences between the LMWH preparations that may result in different clinical outcomes, and also reviews the implications and challenges physicians face when generic versions of the original/innovator agents are approved for clinical use.