988 resultados para Drought resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate patterns of soil water extraction and drought resistance among genotypes of bermudagrass (Cynodon spp.) a perennial C-4 grass. Four wild Australian ecotypes (1-1, 25a1, 40-1, and 81-1) and four cultivars (CT2, Grand Prix, Legend, and Wintergreen) were examined in field experiments with rainfall excluded to monitor soil water extraction at 30-190 cm depths. In the study we defined drought resistance as the ability to maintain green canopy cover under drought. The most drought resistant genotypes (40-1 and 25a1) maintained more green cover (55-85% vs 5-10%) during water deficit and extracted more soil water (120-160 mm vs 77-107 mm) than drought sensitive genotypes, especially at depths from 50 to 110 cm, though all genotypes extracted water to 190 cm. The maintenance of green cover and higher soil water extraction were associated with higher stomatal conductance, photosynthetic rate and relative water content. For all genotypes, the pattern of water use as a percentage of total water use was similar across depth and time We propose the observed genetic variation was related to different root characteristics (root length density, hydraulic conductivity, root activity) although shoot sensitivity to drying soil cannot be ruled out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements Mayuri Munasinghe was supported by a Commonwealth Scholarship (ref no. LKCS-2009-384). The development and use of the SNP chip was funded by a BBSRC grant BB/J003336/1. The authors thank Owen Price (University of Wollongong, Australia) for producing the coloured province map of Sri Lanka, Gareth Norton (Aberdeen) for merging the RDP1 SNP data with the Sri Lankan data and Tony Travis (Aberdeen) for help with PCA.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We determined the influence of the triazole derivatives paclobutrazol, penconazole, epixiconazole, propiconazole and myclobutanil on the drought tolerance and post drought recovery of container-grown horse chestnut (Aesculus hippocastanum L.) saplings. Myclobutanil neither conferred drought resistance, as assessed by its effects on a number of physiological and biochemical parameters, nor affected growth parameters measured after recovery from drought. Chlorophyll fluorescence (F,IF,,), photosynthetic rates, total foliar chlorophyll and carotenoid concentrations, foliar proline concentration and superoxide dismutase and catalase activities were consistently higher and leaf necrosis and cellular electrolyte leakage was lower at the end of a 3-week drought in trees treated with paclobutrazol, penconazole, epixiconazole or propiconazole than in control trees. Twelve weeks after drought treatment, leaf area and shoot, root and total plant dry masses were greater in triazole-treated trees than in control trees with the exception of those treated with myclobutanil. In a separate Study, trees were subjected to a 2-week drought and then sprayed with paclobutrazol, penconazole, epixiconazole, propiconazole or myclobutanil. Chlorophyll fluorescence, photosynthetic rate, foliar chlorophyll concentration and catalase activity over the following 12 weeks were 20 to 50% hi-her in triazole-treated trees than in control trees. At the end of the 12-week recovery period, leaf area and shoot, root and total plant dry masses were higher in triazole-treated trees than in control trees, with the exception of trees treated with myclobutanil. Application of triazole derivatives, with the exception of myclobutanil, enhanced tolerance to prolonged drought and, when applied after a 2-week drought, hastened recovery from drought. The magnitude of treatment effects was in the order epixiconazole approximate to propiconazole > penconazole > paclobutrazol > myclobutanil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Screening for drought resistance of rainfed lowland rice using drought score (leaf death) as a selection index has a long history of use in breeding programs. Genotypic variation for drought score during the vegetative stage in two dry season screens was examined among 128 recombinant inbred lines from four biparental crosses. The genotypic variation detected for drought score in the dry season was used to examine the reliability of the dry season screening method to estimate relative grain yield of genotypes under different types of drought stress in the wet season. Large genotypic variation for drought score existed in two experiments (A and B). However, there was no relationship between the drought scores of genotypes determined in these two experiments. Different patterns of development and severity of drought stress in these two experiments, i.e. slow development and mild plant water deficit in experiment A and fast development and severe plant water deficit in experiment B, were identified as the major factors contributing to the genotypes responding differently. Larger drought score in the dry season experiments was associated with lower grain yield under specific drought stress conditions in the wet season, but the association was weak to moderate and significant only in particular drought conditions. In most cases, a significant phenotypic and moderate genetic correlation between drought score in the dry season and grain yield in the wet season existed only when both drought score and grain yield of genotypes were affected by similar patterns and severity of drought stress in their respective experimental environments. The dry season environments used to measure genotypic variation for drought score should be managed to correspond to relevant types of drought environment that are frequent in the wet season. The efficiency of using the drought score as an indirect selection criterion for improving grain yield for drought conditions was lower than the direct selection for grain yield, and hence wet season screening with grain yield as a selection criterion would be more efficient. However, using drought score as a selection index, a larger number of genotypes can be evaluated than for wet season grain yield. Therefore, it is possible to apply higher selection intensities using the drought score system, and the selected lines can be further tested for grain yield in the wet season. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.