985 resultados para Drop Size


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new throttling system far SI engines is examined. The SMD of the fuel droplets in the induction system is measured to evaluate the performance of the new device with respect to the conventional throttle plate arrangement. The measurements are conducted at steady now conditions. A forward angular scattering technique with a He-Ne laser beam is used for droplet size measurement. The experiments are carried out with different mixture strength, stream velocity and throttle positions. It is observed that A/F ratio has no effect on SMD. However, stream velocity and throttle position have a significant influence on SMD. The new throttling method is found to be more effective in reducing the SMD, particularly at low throttle opening and high stream velocity compared to the conventional throttle plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is focused on the development of a model for predicting the mean drop size in effervescent sprays. A combinatorial approach is followed in this modeling scheme, which is based on energy and entropy principles. The model is implemented in cascade in order to take primary breakup (due to exploding gas bubbles) and secondary breakup (due to shearing action of surrounding medium) into account. The approach in this methodology is to obtain the most probable drop size distribution by maximizing the entropy while satisfying the constraints of mass and energy balance. The comparison of the model predictions with the past experimental data is presented for validation. A careful experimental study is conducted over a wide range of gas-to-liquid ratios, which shows a good agreement with the model predictions: It is observed that the model gives accurate results in bubbly and annular flow regimes. However, discrepancies are observed in the transitional slug flow regime of the atomizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Physics, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution. The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind tunnel measurements of drop Size distributions from Micronair A U4000 and A U5000 rotary atomizers were collected to develop a database for model use. The measurements varied tank mix, flow rate, air speed, and blade angle conditions, which were correlated by multiple regressions (average R-2 = 0.995 for A U4000 and 0.988 for AU5000). This database replaces an outdated set of rotary atomizer data measured in the 1980s by the USDA Forest Service and fills in a gap in data measured in the 1990s by the Spray Drift Task Force. Since current USDA Forest Service spray projects rely on rotary atomizers, the creation of the database (and its multiple regression interpolation) satisfies a need seen for ten years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The existingm odels of drop breakage in stirred dispersions grossly overpredict the maximum drop size when surface active agents are present inspite of using the lowered value of interfacial tension. It is shown that the difference in the values of dynamic and static interfacial tension, aids the turbulent stresses in drop breakage. When the difference is zero, e.g. for pure liquids and for high concentration of surfactants, the influence of the addition of surfactant is merely to reduce the interfacial tension and can be accounted for by existingm odels. A modified model has been developed, where the drop breakage is assumed to be represented by a Voigt element. The deforming stresses are due to turbulence and the difference between dynamic and static interfacial tensions. The resisting stresses arise due to interfacial tension and the viscous flow inside the drop. The model yields the existing expressions for dmax as special cases. The model has been found to be satisfactory when tested against experimental results using the styrene-water-teepol system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present volume of fluid based numerical simulations of secondary breakup of a drop with high density ratio (approx. 1000) and also perform experiments by injecting monodisperse water droplets in a continuous jet of air and capture the breakup regimes, namely, bag formation, bag-stamen, multibag and shear breakup, observed in the moderate Weber number range (20-120). We observe an interesting transition regime between bag and shear breakup for We = 80, in both simulations as well as experiments, where the formation of multiple lobes, is observed, instead of a single bag, which are connected to each other via thicker rim-like threads that hold them. We show that the transition from bag to shear breakup occurs owing to the rim dynamics which shows retraction under capillary forces at We = 80, whereas the rim is sheared away with flow at We = 120 thus resulting in a backward facing bag. The drop characteristics and timescales obtained in simulations are in good agreement with experiments. The drop size distribution after the breakup shows bimodal nature for the single-bag breakup mode and a unimodal nature following lognormal distribution for higher Weber numbers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High speed photographic images of jets formed from dilute solutions of polystyrene in diethyl phthalate ejected from a piezoelectric drop-on-demand inkjet head have been analyzed in order to study the formation and distribution of drops as the ligament collapses. Particular attention has been paid to satellite drops, and their relative separation and sizes. The effect of polymer concentration was investigated. The distribution of nearest-neighbour centre spacing between the drops formed from the ligament is better described by a 2-parameter modified gamma distribution than by a Gaussian distribution. There are (at least) two different populations of satellite size relative to the main drop size formed at normal jetting velocities, with ratios of about three between the diameters of the main drop and the successive satellite sizes. The distribution of the differences in drop size between neighbouring drops is close to Gaussian, with a small non-zero mean for low polymer concentrations, which is associated with the conical shape of the ligament prior to its collapse and the formation of satellites. Higher polymer concentrations result in slower jets for the same driving impulse, and also a tendency to form ligaments with a near-constant width. Under these conditions the mean of the distribution of differences in nearest-neighbour drop size was zero.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Droplet size distribution of biodiesel oil with various compositions was investigated in this work. The droplets generated by a two-fluid atomizer were measured by a commercial PDA. It was found that viscosity of the fuel has a strong effect on the drop size distribution. Additionally, effect of air injection pressures applied to atomize the spray was taken into account. Shear force induced by flow field exerts an effect on distribution of biodiesel droplets in atomized spray.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid medications are often crushed and mixed with food or thickened water to aid drug delivery for those who cannot or prefer not to swallow whole tablets or capsules. Dysphagic patients have the added problem of being unable to safely swallow thin fluids so water thickened with polysaccharides is used to deliver crushed medications and ensure safe swallowing. It is postulated that these polysaccharide systems may restrict drug release by reducing the diffusion of the drug into gastric fluids. METHODS By using a vertical diffusion cell separated with a synthetic membrane, the diffusion of a model drug (atenolol) was studied from a donor system containing the drug dispersed into thickened water with xanthan gum (concentration range from 0.005%-2.2%) into a receptor system containing simulated gastric fluid (SGF) at 37°C. The amount of drug transferred was measured over 8 hours and diffusion coefficients estimated using the Higuchi model approach. RESULTS Atenolol diffusion decreased with increasing xanthan gum concentration up to 1.0%, above which diffusion remained around 300 μ2s-1. The rheological measurements captured the influence of the structure and conformation of the polysaccharide in water on the movement and availability of the drug in SGF. DISCUSSION Dose form administration for dysphagic patients’ needs special attention from general practitioners, pharmacist and patients. Improving drug release of crushed tablets from thickening agents requires a reduction in the diffusion pathway (e.g. by decreasing drop size radius). This approach could make the drug available in SGF in a short time without compromising the mechanical aspects of thickening agents that guarantee safe swallowing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study of atomization has been made with an external mixing-type pneumatic atomizer. The drops were sampled on Vaseline-coated cells using a shutter arrangement and their sizes were measured under a microscope. The effects of liquid viscosity, liquid surface tension, liquid flow rate, air velocity, and nozzle angle on drop size have been studied. A model, which explains adequately the influence of various factors, has been proposed. This model predicts the values of average drop sizes over a wide range of operating conditions. The model also explains the data of other investigators who have used other kinds of pneumatic atomizers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed experimental and simulation study has been carried out in the present work to understand drop breakup in regions around the edge of the Rushton turbine in agitated vessels. The effect of impeller speed, impeller size, interfacial tension, and the viscosities of the two phases is studied on drop breakup through their effect on dmax, the size of the largest drop in the system, and the whole size distribution. The measurements were carried out using Galai particle size analyser and optical microscope. Experimental analysis shows that the dmax, maximum stable drop diameter varies with impeller tip velocity to the power -1. The variation of dmax with interfacial tension is studied using different surfactants. The effect of viscosity ratio, achieved by changing the dispersed phase viscosity, on dmax is captured. For the same dmax values obtained from two different dispersed phases show that the wider drop size distribution is observed for higher dispersed phase viscosity.