858 resultados para Driver perception
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
"January 1995."
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.
Resumo:
This research consisted of five laboratory experiments designed to address the following two objectives in an integrated analysis: (1) To discriminate between the symbol Stop Ahead warning sign and a small set of other signs (which included the word-legend Stop Ahead sign); and (2) To analyze sign detection, recognizability, and processing characteristics by drivers. A set of 16 signs was used in each of three experiments. A tachistoscope was used to display each sign image to a respondent for a brief interval in a controlled viewing experiment. The first experiment was designed to test detection of a sign in the driver's visual field; the second experiment was designed to test the driver's ability to recognize a given sign in the visual field; and the third experiment was designed to test the speed and accuracy of a driver's response to each sign as a command to perform a driving action. A fourth experiment tested the meanings drivers associated with an eight-sign subset of the 16 signs used in the first three experiments. A fifth experiment required all persons to select which (if any) signs they considered to be appropriate for use on two scale model county road intersections. The conclusions are that word-legend Stop Ahead signs are more effective driver communication devices than symbol stop-ahead signs; that it is helpful to drivers to have a word plate supplementing the symbol sign if a symbol sign is used; and that the guidance in the Manual on Uniform Traffic Control Devices on the placement of advance warning signs should not supplant engineering judgment in providing proper sign communication at an intersection.
Resumo:
This contract extension was granted to analyze data obtained in the original contract period at a level of detail not called for in the original contract nor permitted by the time constraints of the original contract schedule. These further analyses focused on two primary questions: I. What sources of variation can be isolated within the overall pattern of driver recognition errors reported previously for the 16 signs tested in Project HR-256? 2. Were there systematic relations among data on the placement of signs in a simulated signing exercise and data on the respondents' ability to detect the presence of a sign in a visual field or their ability to recognize quickly and correctly a sign shown them or the speed with which these same persons can respond to a sign for a driver decision?
Resumo:
The present study was conducted to determine the effects of different variables on the perception of vehicle speeds in a driving simulator. The motivations of the study include validation of the Michigan Technological University Human Factors and Systems Lab driving simulator, obtaining a better understanding of what influences speed perception in a virtual environment, and how to improve speed perception in future simulations involving driver performance measures. Using a fixed base driving simulator, two experiments were conducted, the first to evaluate the effects of subject gender, roadway orientation, field of view, barriers along the roadway, opposing traffic speed, and subject speed judgment strategies on speed estimation, and the second to evaluate all of these variables as well as feedback training through use of the speedometer during a practice run. A mixed procedure model (mixed model ANOVA) in SAS® 9.2 was used to determine the significance of these variables in relation to subject speed estimates, as there were both between and within subject variables analyzed. It was found that subject gender, roadway orientation, feedback training, and the type of judgment strategy all significantly affect speed perception. By using curved roadways, feedback training, and speed judgment strategies including road lines, speed limit experience, and feedback training, speed perception in a driving simulator was found to be significantly improved.
Resumo:
Arizona Department of Transportation, Phoenix
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Safety Bureau, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Driver and Pedestrian Research, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.