968 resultados para Drinking water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in Sao Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A. allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%). The results revealed that 70% of A. caviare, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high incidence of waterborne diseases is observed worldwide and in order to address contamination problems prior to an outbreak, quantitative microbial risk assessment is a useful tool for estimating the risk of infection. The objective of this paper was to assess the probability of Giardia infection from consuming water from shallow wells in a peri-urban area. Giardia has been described as an important waterborne pathogen and reported in several water sources, including ground waters. Sixteen water samples were collected and examined according to the US EPA (1623, 2005). A Monte Carlo method was used to address the potential risk as described by the exponential dose response model. Giardia cysts occurred in 62.5% of the samples (0.1-36.1 cysts/l). A median risk of 10-1 for the population was estimated and the adult ingestion was the highest risk driver. This study illustrates the vulnerability of shallow well water supply systems in peri-urban areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the research was to gain a better understanding of the relationship between drinking water quality, householders' knowledge and maintenance practices of private water supplies and drinking water-related public health risk on farms. Samples of drinking water were taken from 100 farming households. The Colilert-18 method was used for the detection of total coliforms and Escherichia coli (E. coli) as indicators of water quality. Each household completed a questionnaire about their knowledge and practices relating to a safe water supply. Coliforms were present in 52 water samples and E. coli was present in 38. Seven households reported minor illnesses in the previous three months and two households reported gastroenteritis. Some tank maintenance occurred in 86 households, but tank maintenance activities varied considerably. Four of the households had published guidelines on water quality. None of the participating households had their drinking water tested regularly. There was no obvious relationship between drinking water quality, householder knowledge, maintenance practices and drinking water-related health risk on farms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

http://digitalcommons.colby.edu/atlasofmaine2009/1026/thumbnail.jpg

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many contaminants are currently unregulated by the government and do not have a set limit, known as the Maximum Contaminant Level, which is dictated by cost and the best available treatment technology. The Maximum Contaminant Level Goal, on the other hand, is based solely upon health considerations and is non-enforceable. In addition to being naturally occurring, contaminants may enter drinking water supplies through industrial sources, agricultural practices, urban pollution, sprawl, and water treatment byproducts. Exposure to these contaminants is not limited to ingestion and can also occur through dermal absorption and inhalation in the shower. Health risks for the general public include skin damage, increased risk of cancer, circulatory problems, and multiple toxicities. At low levels, these contaminants generally are not harmful in our drinking water. However, children, pregnant women, and people with compromised immune systems are more vulnerable to the health risks associated with these contaminants. Vulnerable peoples should take additional precautions with drinking water. This research project was conducted in order to learn more about our local drinking water and to characterize our exposure to contaminants. We hope to increase public awareness of water quality issues by educating the local residents about their drinking water in order to promote public health and minimize exposure to some of the contaminants contained within public water supplies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

World-wide, water is the single most used substance by humans every day. Water is also the major cause of illness and death in many countries including the affluent nations. Through this research, new risk control philosophies from catchment to consumers are highlighted. This thesis is about identifying the hazards, evaluating the risks and implementing controls to protect public health from drinking water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water quality modelling is becoming increasingly popular in the water industry due to its applications in drinking water and treated wastewater reuse. Microbial growth and disinfectant decay are the two most important factors to be considered in drinking water if they are to comply with stringent guidelines imposed by relevant water regulatory authorities. In the case of drinking water, an optimum level of disinfectant is an important criterion to have pathogen free water with minimal disinfectant by products (DBPs) below the acceptable levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nearly all drinking water distribution systems experience a "natural" reduction of disinfection residuals. The most frequently used disinfectant is chlorine, which can decay due to reactions with organic and inorganic compounds in the water and by liquid/solids reaction with the biofilm, pipe walls and sediments. Usually levels of 0.2-0.5 mg/L of free chlorine are required at the point of consumption to maintain bacteriological safety. Higher concentrations are not desirable as they present the problems of taste and odour and increase formation of disinfection by-products. It is usually a considerable concern for the operators of drinking water distribution systems to manage chlorine residuals at the "optimum level", considering all these issues. This paper describes how the chlorine profile in a drinking water distribution system can be modelled and optimised on the basis of readily and inexpensively available laboratory data. Methods are presented for deriving the laboratory data, fitting a chlorine decay model of bulk water to the data and applying the model, in conjunction with a simplified hydraulic model, to obtain the chlorine profile in a distribution system at steady flow conditions. Two case studies are used to demonstrate the utility of the technique. Melbourne's Greenvale-Sydenham distribution system is unfiltered and uses chlorination as its only treatment. The chlorine model developed from laboratory data was applied to the whole system and the chlorine profile was shown to be accurately simulated. Biofilm was not found to critically affect chlorine decay. In the other case study, Sydney Water's Nepean system was modelled from limited hydraulic data. Chlorine decay and trihalomethane (THM) formation in raw and treated water were measured in a laboratory, and a chlorine decay and THM model was derived on the basis of these data. Simulated chlorine and THM profiles agree well with the measured values available. Various applications of this modelling approach are also briefly discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quality of drinking water generally degrades when it is delivered through a distribution system due to the decay of disinfectant, which subsequently allows the re-growth of microorganisms in the distribution system. A model that describes the changes that occur in the water quality in distribution system is needed to determine whether to enhance the treatment processes or to improve the distribution system so that microbiological criteria are met. This paper describes how chlorine decay kinetics are modeled and the model output is used in finding the elements that are contributing to the consumption of chlorine at the treatment plant other than the water itself; this allows better control of chlorine dosing at the treatment plant, which in tum will reduce the formation of disinfectant by-products. In addition, the model will accurately predict the decay due to the organic/inorganic and nitrogenous compounds that are remaining in the water at any point in the distribution system, which will indicate the status of the distribution system with respect to its chlorine consumption. Further, if re-chlorination is introduced in the distribution system downstream of the treatment plant, the model will predict the chlorine decay due to the slow reacting organic and nitrogenous compounds accurately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamic water quality model for drinking water distribution systems has been developed in this study, to include processes that occur in the bulk water, as well as those occurring in the biofilm of a distribution system. The model has been validated against water quality data obtained from extensive experimental studies conducted with biofilm reactors. Protein and carbohydrate densities in the biofilm represent biofilm biomass. This model is able to predict the disinfectant decay due to organic matter in the bulk water, as well as that due to biofilm. It simultaneously predicts the growth of biofilm in terms of carbohydrate and protein densities. While this model is complex enough to describe the water quality changes in a distribution system, it is also simple enough to be incorporated into a hydraulic model in order to describe the interaction between disinfectant and microbiological quality throughout a drinking water distribution system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present water treatment and distribution is of high priority to ensure that communities have access to safe and affordable drinking water. Current information states that in the United States a total annual cost of $36 billion (US) is spent replacing aging infrastructure, lost water from unaccounted-for leaks, corrosion inhibitors, internal mortar linings, external coatings, and cathodic protection as a result of corrosion. In order to reduce the cost incurred as a result of corrosion in the water distribution industry, it is essential that better corrosion management and preventative strategies are implemented. However through investigation of research previously undertaken by others, it was found that there was a lack of study of corrosion within distribution systems in the tropics taking into account the related seasonal temperature variations. To assist in the development of management strategies to improve the outcomes of drinking water distribution systems, the authors propose to implement a pilot study involving the installation of a corrosion reactor based on standard corrosion assessment technologies in a water distribution system located in the tropics.