913 resultados para Drilling process monitoring
Resumo:
This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.
Resumo:
This article describes the architecture of a monitoring component for the YAWL system. The architecture proposed is based on sensors and it is realized as a YAWL service to have perfect integration with the YAWL systems. The architecture proposed is generic and applicable in different contexts of business process monitoring. Finally, it was tested and evaluated in the context of risk monitoring for business processes.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
The STREAM Initiative is a process rather than a project, and its focus is on learning and building on learning, not the achievement of pre-determined objectives. An overarching goal of STREAM is to facilitate changes that support poor people who manage aquatic resources. A key objective of STREAM is policy change, which in itself is complex and difficult to monitor. Two further layers of complexity relate to the regional scope of the Initiative and the collaborative involvement of stakeholders, all of which need to be accountable for their work. The objectives of this workshop are consistent with the aims of the STREAM Initiative and can be summerized as follows: 1- Familiarizing everyone in the regional STREAM Initiative with work being done in process monitoring and significant change. 2- Discussion and development of a practical information system that enables (i) the monitoring of development processes and significant changes occurring within the STREAM Initiative, and (ii) learning to inform STREAM implementation and other stakeholders. (PDF has 59 pages.)
Resumo:
This paper presents two new approaches for use in complete process monitoring. The firstconcerns the identification of nonlinear principal component models. This involves the application of linear
principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation. The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented.
Resumo:
This paper introduces a fast algorithm for moving window principal component analysis (MWPCA) which will adapt a principal component model. This incorporates the concept of recursive adaptation within a moving window to (i) adapt the mean and variance of the process variables, (ii) adapt the correlation matrix, and (iii) adjust the PCA model by recomputing the decomposition. This paper shows that the new algorithm is computationally faster than conventional moving window techniques, if the window size exceeds 3 times the number of variables, and is not affected by the window size. A further contribution is the introduction of an N-step-ahead horizon into the process monitoring. This implies that the PCA model, identified N-steps earlier, is used to analyze the current observation. For monitoring complex chemical systems, this work shows that the use of the horizon improves the ability to detect slowly developing drifts.
Resumo:
Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing Cl implementation and likely future developments in the technology are also discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
Drilling of Ti6Al4V is investigated experimentally and numerically. A 3D finite element model developed based on Lagrangian approach using commercial finite element software ABAQUS/explicit. 3D complex drill geometry is included in the model. The drilling process simulations are performed at the combinations of three cutting speed and four feed rates. The effects of cutting parameters on the induced thrust force and torque are predicted by the developed model. For validation purpose, experimental trials have been performed in similar condition to the simulations. The forces and torques measured during experiment are compared to the results of the finite element analysis. The agreement of the experimental results for force and torque values with the FE results is very good. Moreover, surface roughness of the holes was measured for mapping of machining. Copyright © 2013 Inderscience Enterprises Ltd.