499 resultados para Dracaena marginata
Resumo:
The plant-parasitic nematodes are responsible for serious injuries in roots and shoots of ornamental plants, reducing its beauty and consequently its economic value. This study aimed to ascertain the occurrence and distribution of plantparasitic nematodes through the analysis of the roots of ornamental and flowering plants at UNESP FCAV's landscape. The roots were collected from fifteen different species as follows: Anthurium andreannum, Rhododendron simsii, Impatiens walleriana, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Dracaena marginata, Ficus benjamina, Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'American Beauty' and 'Mini', Odontonema strictum, Portulaca grandiflora, Strelitzia reginae, Tradescantia zebrina and Tradescantia pallida. Samples of roots were processed. The plant-parasitic nematodes identified in the samples were: Meloidogyne sp. (Anthurium andreannum, Calathea stromata, Dieffenbachia picta, Ficus benjamina, Impatiens walleriana, Odontonema strictum, Portulaca grandiflora, Spathiphyllum ortgiesii 'Sensation'), Helicotylenchus dihystera (Calathea stromata, Dracaena marginata, Portulaca grandiflora, Spathiphyllum ortgiessi 'Sensation', Tradescantia pallida, Tradescantia zebrina), Tylenchus sp. (Anthurium andreannum, Calathea stromata, Cordyline terminalis, Dieffenbachia picta, Ficus benjamina, Rhododendron simsii), Aphelenchoides sp. (Dieffenbachia picta, Spathiphyllum ortgiesii 'Sensation', S. wallisi 'American Beauty'), Rotylenchulus reniformis (Cordyline terminalis, Dracaena marginata, Odontonema strictum), Pratylenchus sp. (Spathiphyllum ortgiesii 'Sensation', Spathiphyllum wallisi 'Mini'), Ditylenchus sp. (Spathiphyllum wallisi 'Mini'), Pratylenchus brachyurus (Tradescantia zebrina). The plant-parasitic nematodes weren't found in the roots of Strelitzia reginae.
Resumo:
Members of social insect colonies employ a large variety of chemical signals during their life. Of these, cuticular hydrocarbons are of primary importance for social insects since they allow for the recognition of conspecifics, nestmates and even members of different castes. The objectives of this study were (1) to characterize the variation of the chemical profiles among workers of the stingless bee Melipona marginata, and (2) to investigate the dependence of the chemical profiles on the age and on the behavior of the studied individuals. The results showed that cuticular hydrocarbon profiles of workers were composed of alkanes, alkenes and alkadienes that varied quantitatively and qualitatively according to function of workers in the colony. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence of Sarasinula marginata, a possible intermediate host of Angiostrongylus costaricensis, in the city of Belo Horizonte, MG, Brazil, is reported on.
Resumo:
Espécimes de Sarasinula marginata foram coletadas em hortas e jardins residenciais de Belo Horizonte, Minas Gerais. A suscetibilidade desta espécie de lesma ao Angiostrongylus costaricensis foi verificada em laboratório, utilizando-se 15 exemplares da geração F1. Foi demonstrada uma positividade de 80,0%
Resumo:
The intermediate hosts of Angiostrongylus costaricensis are terrestrian molluscs, mostly of the family Veronicellidae. The present work aimed at clarifying more accurately the sites of penetration and the migratory routes of A. costaricensis in the tissue slugs and at verifying the pattern of the perilarval reaction at different times of infection. Slugs were individually infected with 5,000 L1, and killed from 30 min to 30 days after infection. From 30 min up to 2 hr after infection, L1 were found within the lumen of different segments of the digestive tube having their number diminished in more advanced times after exposition until complete disappearance. After 30 min of exposition, percutaneous infection occurred, simultaneously to oral infection. Perilarval reaction was observed from 2 hr of infection around larvae in fibromuscular layer, appearing later (after 6 hr) around larvae located in the viscera. A pre-granulomatous reaction was characterized by gradative concentration of amebocytes around larvae, evolving two well-organized granulomas. In this work we confirmed the simultaneous occurrence of oral and percutaneous infections. Perilarval reaction, when very well developed, defined typical granulomatous structure, including epithelioid cell transformation. The infection also caused a systemic mobilization of amebocytes and provoked amebocyte-endothelium interactions.
Resumo:
Angiostrongylus costaricensis intermediate hosts are terrestrial mollusks mostly belonging to the Veronicellidae family. In the present investigation we focused on the mechanisms of larval expulsion from Sarasinula marginata infected with A. costaricensis. Twenty-five mollusks were individually infected with 5000 L1 and sacrificed at 30 min and 1, 2, 4, 6, and 8 h post-infection and at days 1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 20, 21, 22, 25, 26, 28, and 30 post-infection; the mollusks were then fixed and stained. Diverse organs involved throughout the course of the migratory routes of larvae from oral penetration on were specified and the mechanisms of larval access to the fibromuscular layer through the kidney, rectum, and vascular system were defined. The elimination of L3, derived from oral and/or cutaneous infections, appears to depend on granulomas located close to the excretory ducts of mucous cells.
Resumo:
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.
Resumo:
Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root
Resumo:
Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (Dracaena guianensis) with those in a closely related omnivorous species (Tupinambis merianae). Our data show that juvenile D. guianensis differ from T. merianae in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult Dracaena and Tupinambis revealed that Dracaena typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although Dracaena is slow, these animals are very effective in crushing and processing hard-shelled prey. J. Exp. Zool. 317A:371381, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Hosts of Trigonalidae include larvae of social paper wasps, which have been considered secondary hosts, supposedly following predation of the primary host (usually caterpillars) by adult wasps. This study provides observations on biological aspects of the parasitism of Apoica flavissima Van der Vecht by Seminota marginata (Westwood), and suggests that social wasps may be both primary and secondary hosts, whereas they extract and chew vegetable fiber.