7 resultados para Dqb
Resumo:
To identify possible associations between host genetic factors and the onset of liver fibrosis following Schistosoma japonicum infection, the major histocompatibility class II alleles of 84 individuals living on an island (Jishan) endemic for schistosomiasis japonica in the Poyang Lake Region of Southern China were determined. Forty patients exhibiting advanced schistosomiasis, characterised by extensive liver fibrosis, and 44 age and sex-matched control subjects were assessed for the class II haplotypes HLA-DRBI and HLA-DQB1. Two HLA-DRB1 alleles, HLA-DRB1*0901 (P = 0.012) and *1302 (P = 0.039), and two HLA-DQB1 alleles, HLA-DQB1*0303 (P = 0.012) and *0609 (P = 0.037), were found to be significantly associated with susceptibility to fibrosis. These associated DRB1 and DQB1 alleles are in very strong linkage disequilibrium, with DRB1*0901-DQB1*0303 and DRB1*1302-DQB1*0609 found as: common haplotypes in this population. In contrast, the alleles HLA-DRB1*1501 (P = 0.025) and HLA-DQB 1*0601 (P = 0.022) were found to be associated with resistance to hepatosplenic disease. Moreover, the alleles DQB1*0303 and DRB1*0901 did not increase susceptibility in the presence of DQB1*0601, indicating that DQB1*0601 is dominant over DQB1*0303 and DRB1*0901. The study has thus identified both positive and negative associations between HLA class II alleles and the risk of individuals developing moderate to severe liver fibrosis following schistosome infection. (C) 2001 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds.
Resumo:
O MHC (Major Histocompatibility Complex) é um sistema genético importante para a manutenção de espécies ameaçadas, uma vez que baixa variabilidade para locos MHC tem sido associada a uma menor capacidade de resposta a doenças e diminuição do sucesso reprodutivo. Deste modo, pesquisas sobre a variabilidade genética do MHC têm demonstrado ser bastante informativas em estudos populacionais voltados para aspectos referentes à conservação. No presente trabalho foi investigada a variabilidade genética do MHC para três espécies de mamíferos marinhos (toninha, baleia franca austral e lobo marinho sul-americano) do sul do Brasil, com intensa mortalidade provocada por atividades humanas atuais ou passadas. As amostras foram coletadas de animais mortos encalhados na costa, de animais capturados acidentalmente por barcos pesqueiros, e também através de um sistema de biópsia. A região variável do exon 2 do gene DQB do MHC foi amplificada por PCR (Polymerase Chain Reaction) em 109 amostras de toninhas (Rio de Janeiro n=32, Rio Grande do Sul n=52, Argentina n=25), 35 amostras de lobo marinho sul-americano e 30 amostras de baleia franca austral, utilizando-se um par de primers heterólogos. O fragmento resultante de 172 pares de bases foi analisado quanto ao polimorfismo de seqüência através da técnica de SSCP (Polimorfismo de Conformação de Fita Simples) em todas as amostras de toninha e de lobo marinho sul-americano e 14 amostras de baleia franca austral. Dificuldades associadas à amplificação resultaram em padrões de SSCP pouco informativos para as amostras de lobo marinho sul-americano e baleia franca austral Todas as amostras de toninha apresentaram um padrão de pelo menos 4 bandas por indivíduo. As 4 bandas de um único indivíduo do Rio Grande do Sul foram seqüenciadas, tendo sido possível verificar que 2 seqüências relacionadas ao genes DQB estão sendo amplificadas com estes primers. Pelas análises de SSCP foi possível detectar ausência de variabilidade para as amostras de toninha provenientes do Rio de Janeiro e diferenciá-las da população da Argentina, que é polimórfica. A população do Rio Grande do Sul parece apresentar níveis intermediários de variação em relação aos extremos da distribuição da espécie. Analisando as três populações amostradas, conclui-se que a espécie apresenta baixos níveis de variabilidade para o loco DQB, a exemplo do que é reportado para os genes de MHC de outros mamíferos marinhos.
Resumo:
Epidermodysplasia verruciformis (EV) is triggered by a variety of mechanisms that at least partly include genetic background. We present a Brazilian man with a 30-year history of flat, wart-like lesions with clinical, histopathological, and evolutive aspects consistent with papillomavirus (HPV)-associated EV. Histological analysis of the wart lesions showed epidermis with hyperkeratosis, regular acanthosis, hypergranulosis, and cells with abundant basophilic cytoplasm. Moreover, a perivascular lymphocytic infiltrate was found in the superficial dermis, consistent with a viral wart. Type-2-HPV DNA was detected in various fragments of skin-wart lesions using the polymerase chain reaction (PCR). Two years after the EV diagnosis, the patient presented with an anesthetic well-demarcated, erythematous and mildly scaly plaque on his right forearm. A histopathological analysis of this lesion demonstrated the presence of a compact tuberculoid granuloma. Ziehl-Neelsen staining demonstrated the presence of rare acid-fast bacilli and confirmed the tuberculoid leprosy diagnosis. The patient's Mitsuda Intradermal Reaction was positive. To elucidate the possible mechanism involved in this case of EV, we genotyped the HLA genes of this patient. DQB genotyping showed the polymorphic HLA alleles DQB1*0301 and 0501. The patient was treated with a paucibacillary multidrug therapy scheme, and the disease was cured in six months. This report describes an EV patient with an M. leprae infection, confirming that tuberculoid leprosy patients possess a relatively specific and efficient cell-mediated immunity against the bacillus and, therefore, localized forms of the disease. Moreover, we show the possible involvement of the polymorphic HLA alleles DQB1*0301 and 0501 in EV induction mechanisms.
Resumo:
The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, QB. This process involves the transfer of two protons from the aqueous solution to the protein-bound QB molecule. The second proton, H+(2), is supplied to QB by Glu-L212, an internal residue protonated in response to formation of QA− and QB−. In this work, the pathway for H+(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of QA (DQA→D+QA−) and QB (DQB→D+QB−), studied by using pH-sensitive dyes. The other was the electron transfer kAB(1) (QA−QB→QAQB−). At pH 8.5, binding of Zn2+, Cd2+, or Ni2+ reduced the rates of proton uptake upon QA− and QB− formation as well as kAB(1) by ≈an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D+QA− is formed 105-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212→Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn2+ binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H+(2) was thus identified to be the same as for the first proton H+(1), close to the metal binding region Asp-H124, His-H126, and His-H128.
Resumo:
The genome of the European hedgehog, Erinaceus concolor and E. europaeus, shows a strong signal of cycles of restriction to glacial refugia and postglacial expansion. Patterns of expansion, however, differ for mitochondrial DNA (mtDNA) and preliminary analysis of nuclear markers. In this study, we determine phylogeographic patterns in the hedgehog using two loci of the major histocompatibility complex (MHC), isolated for the first time in hedgehogs. These genes show long persistence times and high polymorphism in many species because of the actions of balancing selection. Among 84 individuals screened for variation, only two DQA alleles were identified in each species, but 10 DQB alleles were found in E. concolor and six in E. europaeus. A strong effect of demography on patterns of DQB variability is observed, with only weak evidence of balancing selection. While data from mtDNA clearly subdivide both species into monophyletic subgroups, the MHC data delineate only E. concolor into distinct subgroups, supporting the preliminary findings of other nuclear markers. Together with differences in variability, this suggests that the refugia history and/or expansion patterns of E. concolor and E. europaeus differ.
Resumo:
A functional immune system requires a tight control over major histocompatibility complex (MHC) gene transcription, as the abnormal MHC expression patterns of severe immunodeficiency and autoimmune diseases demonstrate. Although the regulation of MHC expression has been well documented in humans and mice, little is known in other species. In this study, we detail the level of polymorphism in wolf and dog MHC gene promoters. The promoter regions of the DRB, DQA and DQB locus were sequenced in 90 wolves and 90 dogs. The level of polymorphism was high in the DQB promoters, with variation found within functionally relevant regions, including binding sites for transcription factors. Clear associations between DQB promoters and exon 2 alleles were noted in wolves, indicating strong linkage disequilibrium in this region. Low levels of polymorphism were found within the DRB and DQA promoter regions. However, a variable site was identified within the T box, a TNF-alpha response element, of the DQA promoter. Furthermore, we identified a previously unrecognised 18-base-pair deletion within exon 1 of the DQB locus.