651 resultados para Dough rheology
Resumo:
Bread dough and particularly wheat dough, due to its viscoelastic behaviour, is probably the most dynamic and complicated rheological system and its characteristics are very important since they highly affect final products’ textural and sensorial properties. The study of dough rheology has been a very challenging task for many researchers since it can provide numerous information about dough formulation, structure and processing. This explains why dough rheology has been a matter of investigation for several decades. In this research rheological assessment of doughs and breads was performed by using empirical and fundamental methods at both small and large deformation, in order to characterize different types of doughs and final products such as bread. In order to study the structural aspects of food products, image analysis techniques was used for the integration of the information coming from empirical and fundamental rheological measurements. Evaluation of dough properties was carried out by texture profile analysis (TPA), dough stickiness (Chen and Hoseney cell) and uniaxial extensibility determination (Kieffer test) by using a Texture Analyser; small deformation rheological measurements, were performed on a controlled stress–strain rheometer; moreover the structure of different doughs was observed by using the image analysis; while bread characteristics were studied by using texture profile analysis (TPA) and image analysis. The objective of this research was to understand if the different rheological measurements were able to characterize and differentiate the different samples analysed. This in order to investigate the effect of different formulation and processing conditions on dough and final product from a structural point of view. For this aim the following different materials were performed and analysed: - frozen dough realized without yeast; - frozen dough and bread made with frozen dough; - doughs obtained by using different fermentation method; - doughs made by Kamut® flour; - dough and bread realized with the addition of ginger powder; - final products coming from different bakeries. The influence of sub-zero storage time on non-fermented and fermented dough viscoelastic performance and on final product (bread) was evaluated by using small deformation and large deformation methods. In general, the longer the sub-zero storage time the lower the positive viscoelastic attributes. The effect of fermentation time and of different type of fermentation (straight-dough method; sponge-and-dough procedure and poolish method) on rheological properties of doughs were investigated using empirical and fundamental analysis and image analysis was used to integrate this information throughout the evaluation of the dough’s structure. The results of fundamental rheological test showed that the incorporation of sourdough (poolish method) provoked changes that were different from those seen in the others type of fermentation. The affirmative action of some ingredients (extra-virgin olive oil and a liposomic lecithin emulsifier) to improve rheological characteristics of Kamut® dough has been confirmed also when subjected to low temperatures (24 hours and 48 hours at 4°C). Small deformation oscillatory measurements and large deformation mechanical tests performed provided useful information on the rheological properties of samples realized by using different amounts of ginger powder, showing that the sample with the highest amount of ginger powder (6%) had worse rheological characteristics compared to the other samples. Moisture content, specific volume, texture and crumb grain characteristics are the major quality attributes of bread products. The different sample analyzed, “Coppia Ferrarese”, “Pane Comune Romagnolo” and “Filone Terra di San Marino”, showed a decrease of crumb moisture and an increase in hardness over the storage time. Parameters such as cohesiveness and springiness, evaluated by TPA that are indicator of quality of fresh bread, decreased during the storage. By using empirical rheological tests we found several differences among the samples, due to the different ingredients used in formulation and the different process adopted to prepare the sample, but since these products are handmade, the differences could be account as a surplus value. In conclusion small deformation (in fundamental units) and large deformation methods showed a significant role in monitoring the influence of different ingredients used in formulation, different processing and storage conditions on dough viscoelastic performance and on final product. Finally the knowledge of formulation, processing and storage conditions together with the evaluation of structural and rheological characteristics is fundamental for the study of complex matrices like bakery products, where numerous variable can influence their final quality (e.g. raw material, bread-making procedure, time and temperature of the fermentation and baking).
Resumo:
O amido resistente de milho (ARM) não é digerido em humanos fornecendo benefícios para a saúde tais como redução do colesterol, do índice glicêmico e fermentação no cólon. Porém, a substituição parcial de farinha de trigo (FT) por ARM em massa de pão resulta na diluição do glúten prejudicando a qualidade do produto. Massa de pão foi produzida com 12,5 g/100g de ARM e os efeitos das enzimas glicose-oxidase (Gox), tranglutaminase (TG) e xilanase (HE) na massa foram estudados. Massa produzida sem ARM e sem enzimas foi considerada padrão e massa produzida com ARM e sem enzimas foi considerada controle para comparação. Uma metodologia foi desenvolvida para medir o torque durante o amassamento em grande escala, utilizando um reômetro dinâmico adaptado. As propriedades reológicas foram avaliadas nos testes de medidas descritivas de textura, adesividade Chen-Hoseney, extensão uniaxial Kieffer, extensão biaxial e testes oscilatórios em reômetro. Pão produzido de acordo com as formulações padrão, controle e ótima foi avaliado com relação ao volume específico (VEP), firmeza do miolo, cor e análise sensorial para o atributo preferência. As três enzimas testadas influenciaram positivamente o torque máximo atingido durante o amassamento que variou entre (8,36 e 9,38) N m. Gox e TG apresentaram efeito positivo na altura máxima desenvolvida pela massa medida em reofermentógrafo enquanto que o efeito da HE foi negativo. Uma formulação com ARM e enzimas apresentou desempenho de panificação similar a massa padrão (altura máxima ajustada igual a (45,5 ± 3,9) mm), correspondente a adição de (4, 2,5 e 0,5) mg/100g de TG, Gox e HE respectivamente (ótima). A formulação ótima apresentou adesividade, trabalho de adesão, coesividade, dureza, resiliência, resistência à extensão e extensibilidade similares a massa padrão e diferentes da massa controle. As enzimas aumentaram o índice de strain hardening reduzido pela adição de ARM. Para o pão de forma, o VEP variou entre (3,16 e 3,64) cm3/g (diferença não significativa) e o pão produzido com a formulação ótima foi o mais escolhido como preferido. Durante o armazenamento por até 7 dias, o ARM diminuiu a taxa de envelhecimento do pão enquanto que as enzimas apresentaram efeito oposto. Em geral, a substituição parcial de FT por ARM reduziu a elasticidade da massa diminuindo a qualidade do pão enquanto que as enzimas minimizaram esse efeito.
Resumo:
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as T(g) and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 +/- 0.24 cm(3) min(-1) per 100 g of non-frozen dough and 2.22 +/- 0.12 cm(3) min(-1) per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The effect of change of the rheological properties of gluten with the addition of fractions with specific molecular weight was investigated. Fractions extracted from Hereward, Riband and Soissons flours were added to the dough prior to gluten extraction. Once extracted, the glutens were subjected to temperature sweeps and creep recovery rheological tests. In the temperature sweeps, Hereward fractions containing the larger polypeptides had a strengthening effect on the gluten, indicated by a decrease in tan delta and an increase in elastic creep recovery, while those fractions that comprised monomeric gliadins had a weakening effect. Adding total gluten also had a strengthening effect. For the biscuit-making flour Riband, the results were quite the reverse: all fractions appeared to strengthen the gluten network, while the addition of total gluten did not have a strengthening effect. For Soissons gluten, the addition of total gluten had a strengthening effect while adding any individual fraction weakened the gluten. The results were confirmed with creep-recovery tests.
Resumo:
Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.
Resumo:
β-Casein and sodium caseinate stabilized emulsions were produced and had their rheological properties investigated as a function of the nature of the oil phase, ionic strength and pH. Oil phases of distinct structural characteristics, namely decane and vegetable oil of high triglyceride content, were assayed. The former was much more effectively emulsified than the latter. Effects of pH and ionic strength were minor. Emulsion rheological properties were strikingly distinct in each case, with viscoelastic, solid-like structures being formed with decane (G' >> G"), differently from what is observed for samples containing triglycerides as the oil phase, in which viscoelasticity was not even apparent. The relevance of the spatial features of the oil phase structure in the development of the emulsion viscoelastic character is discussed. Factors responding for the system distinct behaviour possibly reside at the emulsion droplet interface, unapproachable by optical microscopy, rather than on aspects related to particle size or shape.
Resumo:
Emulsões estabilizadas por 'beta'-caseína e sódio caseinato tiveram suas propriedades reológicas investigadas em função da natureza da fase oleosa, da força iônica e do pH. Fases oleosas de características estruturais distintas, a saber, decano e óleos vegetais de alto teor triglicerídico, foram ensaiadas. A emulsificação dos sistemas contendo decano foi significativamente mais efetiva do que aquela das amostras contendo triglicérides. Efeitos de pH e força iônica mostraram-se relativamente pouco importantes sobre a capacidade emulsificante da proteína. As propriedades reológicas foram marcadamente distintas em cada caso, com estruturas de caráter sólido (G' G") sendo produzidas com decano, diferentemente do que foi observado para amostras contendo triglicérides, nas quais a viscoelasticidade não foi nem mesmo aparente. A relevância de aspectos espaciais da estrutura da fase oleosa no desenvolvimento do caráter viscoelástico é discutida. Propõe-se que os fatores responsáveis pelo comportamento distinto observado residam possivelmente na interface gotícula/meio dispersante, inacessível por microscopia óptica, e guardam pouca relação com tamanho ou forma da gotícula.
Resumo:
Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from -40 degrees C to 35 degrees C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7-23.1) J g(-1) degrees C(-1), and was constant at temperatures above freezing (2.7 J g(-1) degrees C(-1)). Unfreezable water content varied from (0.174-0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, flatbed scanning, instrumental texture analysis, spectrophotometric color determination (L*, a*, b*), moisture and specific volume measurements were used to evaluate the effects of the addition of rye flour or rye flakes, yeast and boiling water in different amounts in sponge-dough rye bread production. The treatments changed significantly (P < 0.05) the crumb cell area (mm(2)), cell diameter (mm), cell perimeter (mm), texture parameters and light reflectance (L*, a*, b*). Scalding process could be used to produce new textures and color of baked products.
Resumo:
To determine the effect of slurry rheology on industrial grinding performance, 45 surveys were conducted on 16 full-scale grinding mills in five sites. Four operating variables - mill throughput, slurry density, slurry viscosity and feed fines content-were investigated. The rheology of the mill discharge slurries was measured either on-line or off-line, and the data were processed using a standard procedure to obtain a full range of flow curves. Multi-linear regression was employed as a statistical analysis tool to determine whether or not rheological effects exert an influence on industrial grinding, and to assess the influence of the four mill operating conditions on mill performance in terms of the Grinding Index, a criterion describing the overall breakage of particles across the mill. The results show that slurry rheology does influence industrial grinding. The trends of these effects on Grinding Index depend upon the rheological nature of the slurry-whether the slurries are dilatant or pseudoplastic, and whether they exhibit a high or low yield stress. The interpretation of the regression results is discussed, the observed effects are summarised, and the potential for incorporating rheological principles into process control is considered, Guidelines are established to improve industrial grinding operations based on knowledge of the rheological effects. This study confirms some trends in the effect of slurry rheology on grinding reported in the literature, and extends these to a broader understanding of the relationship between slurry properties and rheology, and their effects on industrial milling performance. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Ten surveys of the ball milling circuit at the Mt Isa Mines (MIM) Copper Concentrator were conducted aiming to identify any changes in slurry theology caused by the use of chrome balls charge, and the associated effect on grinding performance. Slurry theology was measured using an on-line viscometer. The data were mass balanced and analysed with statistical tools. Comparison of the rheogram demonstrated that slurry density and fines content affected slurry rheology significantly, while the effect of the chrome ball charge being negligible. Statistical analysis showed the effects of mill throughput and cyclone efficiency on the Grinding Index (a term describing the overall breakage). There was no difference in the Grinding Index between using the chrome ball charge and the ordinary steel ball charge. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A literature review has highlighted the need to measure flotation froth rheology in order to fully characterise the role of the froth in the flotation process. The initial investigation using a coaxial cylinder viscometer for froth rheology measurement led to the development of a new device employing a vane measuring head. The modified rheometer was used in industrial scale flotation tests at Mt. Isa Copper Concentrator. The measured froth rheograms show a non-Newtonian nature for the flotation froths (pseudoplastic flow). The evidence of the non-Newtonian flow has questioned the validity of application of the Laplace equation in froth motion modelling as used by a number of researchers, since the assumption of irrotational flow is violated. Correlations between the froth rheology and the froth retention time, water hold-up in the froth and concentrate grades have been found. These correlations are independent of air flow rate (test data at various air flow rates fall on one similar trend line). This implies that froth rheology may be used as a lumped parameter for other operating variables in flotation modelling and scale up. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The population growth of a Staphylococcus aureus culture, an active colloidal system of spherical cells, was followed by rheological measurements, under steady-state and oscillatory shear flows. We observed a rich viscoelastic behavior as a consequence of the bacteria activity, namely, of their multiplication and density-dependent aggregation properties. In the early stages of growth (lag and exponential phases), the viscosity increases by about a factor of 20, presenting several drops and full recoveries. This allows us to evoke the existence of a percolation phenomenon. Remarkably, as the bacteria reach their late phase of development, in which the population stabilizes, the viscosity returns close to its initial value. Most probably, this is caused by a change in the bacteria physiological activity and in particular, by the decrease of their adhesion properties. The viscous and elastic moduli exhibit power-law behaviors compatible with the "soft glassy materials" model, whose exponents are dependent on the bacteria growth stage. DOI: 10.1103/PhysRevE.87.030701.
Resumo:
In the initial stage of this work, two potentiometric methods were used to determine the salt (sodium chloride) content in bread and dough samples from several cities in the north of Portugal. A reference method (potentiometric precipitation titration) and a newly developed ion-selective chloride electrode (ISE) were applied. Both methods determine the sodium chloride content through the quantification of chloride. To evaluate the accuracy of the ISE, bread and respective dough samples were analyzed by both methods. Statistical analysis (0.05 significance level) indicated that the results of these methods did not differ significantly. Therefore the ISE is an adequate alternative for the determination of chloride in the analyzed samples. To compare the results of these chloride-based methods with a sodium-based method, sodium was quantified in the same samples by a reference method (atomic absorption spectrometry). Significant differences between the results were verified. In several cases the sodium chloride content exceeded the legal limit when the chloride-based methods were used, but when the sodium-based method was applied this was not the case. This could lead to the erroneous application of fines and therefore the authorities should supply additional information regarding the analytical procedure for this particular control.
Resumo:
The friction torque and the operating temperatures in a thrust ball bearing were measured for seven different types of greases, including three biodegradable greases having low toxicity. These friction torque tests were performed using a modified Four-Ball machine. Rheological evaluations of the lubricating greases were made using a rheometer. Bleed oils were extracted from the greases and the dynamic viscosities were measured. In order to compare the performance of the lubricant greases in terms of friction, the grease characteristics were related to experimental results, showing that the interaction between thickener and base oil have strong influences in the bearing friction torque.