995 resultados para Double-step reaching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Although there are a number of plausible accounts to explain movement clumsiness in children [or developmental coordination disorder (DCD)], the cause(s) of the disorder remain(s) an issue of debate. One aspect of motor control that is particularly important to the fluid expression of skill is rapid online control (ROC). Data on DCD have been conflicting. While some recent work using double-step reaching suggests no difficulty in online control, others suggest deficits (e.g. based on sequential pointing). To help resolve this debate, we suggest two things: use of recent neuro-computational models as a framework for investigating motor control in DCD, and more rigorous investigation of double-step reaching. Our working assumption here is that ROC is only viable through the seamless integration of predictive (or forward) models of movement and feedback-based mechanisms.

Aim
The aim of this chronometric study was to explore ROC in children with DCD using a double-step reaching paradigm. We predicted slower online adjustments in DCD based on the argument that these children manifest a core difficulty in predictive control.

Methods
Participants were a group of 17 children with DCD and 27 typically developing children aged between 7 and 12 years. Visual targets were presented on a 17-inch LCD touch screen, inclined to an angle of 15° from horizontal. The children were instructed to press each target as it appeared as quickly and accurately as possible. For 80% of the trials, the central target location remained unchanged for the duration of the movement (non-jump trials), while for the remaining 20% of trials, the target jumped at movement onset to one of the two peripheral locations (jump trials). Reaction time (RT), movement time (MT) and reaching errors were recorded.

Results
For both groups, RT did not vary according to trial condition, while children with DCD were slower to initiate movement. Further, the MT of children with DCD was prolonged to a far greater extent on jump trials relative to controls, with a large effect size. As well, children with DCD committed significantly more errors, notably a reduced ability to inhibit central responses on jump trials.

Conclusion
Our findings help reconcile some disparate findings in the literature using similar tasks. The pattern of performance in children with DCD suggests impairment in the ability to make rapid online adjustments that are based on a predictive (or internal) model of the action. These results pave the way for future kinematic investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to investigate the integrity of on-line control of reaching in congenital spastic hemiplegia in light of disparate evidence. Twelve children with and without spastic hemiplegia (11-17 years old) completed a double-step reaching task requiring them to reach and touch a target that remained stationary for most trials (viz nonjump trial) but unexpectedly displaced laterally at movement onset for a minority of trials (20%: known as jump trials). Although children with spastic hemiplegia were generally slower than age-matched controls, they could account for target perturbation at age-appropriate levels shown by a lack of interaction effect on movement time and nonsignificant group difference for time to reach trajectory correction on jump trials. Our data suggest that at a group level, on-line control of reaching may be age-appropriate in spastic hemiplegia. However, our data also highlight the need to experimentally acknowledge the considerable heterogeneity of the spastic hemiplegia population when investigating motor cognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurocomputational models of reaching indicate that efficient purposive correction of movement midflight (e.g., online control) depends on one's ability to generate and monitor an accurate internal (neural) movement representation. In the first study to test this empirically, the authors investigated the relationship between healthy young adults’ implicit motor imagery performance and their capacity to correct their reaching trajectory. As expected, after controlling for general reaching speed, hierarchical regression demonstrated that imagery ability was a significant predictor of hand correction speed; that is, faster and more accurate imagery performance associated with faster corrections to reaching following target displacement at movement onset. They argue that these findings provide preliminary support for the view that a link exists between an individual's ability to represent movement mentally and correct movement online efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the purported association between developmental changes in the efficiency of online reaching corrections and improved action representation. Younger children (6-7years), older children (8-12years), adolescents (13-17years), and young adults (18-24years) completed a double-step reaching paradigm and a motor imagery task. Results showed similar nonlinear performance improvements across both tasks, typified by substantial changes in efficiency after 6 or 7years followed by incremental improvements. Regression showed that imagery ability significantly predicted reaching efficiency and that this association stayed constant across age. Findings provide the first empirical evidence that more efficient online control through development is predicted, partly, by improved action representation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of confinement of neutral fermions in two-dimensional space-time is approached with a pseudoscalar double-step potential in the Dirac equation. Bound-state solutions are obtained when the coupling is of sufficient intensity. The confinement is made plausible by arguments based on effective mass and anomalous magnetic interaction. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to clarify whether a reduced ability to correct movements in-flight observed in children with developmental coordination disorder (DCD) reflects a developmental immaturity or deviance from the typical trajectory. Eighteen children with DCD (8–12 years), 18 age-matched controls, and 12 younger controls (5–7 years) completed a double-step reaching task. Compared to older controls, children with DCD and younger controls showed similarly prolonged reaching when the target unexpectedly shifted at movement onset and were equally slow to correct their reaching trajectory. These results suggest that impaired online control in DCD reflects developmental immaturity, possibly implicating the parietal-cerebellar cortices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence indicates that the ability to correct reaching movements in response to unexpected target changes (i.e., online control) is reduced in children with developmental coordination disorder (DCD). Recent computational modeling of human reaching suggests that these inefficiencies may result from difficulties generating and/or monitoring internal representations of movement. This study was the first to test this putative relationship empirically. We did so by investigating the degree to which the capacity to correct reaching mid-flight could be predicted by motor imagery (MI) proficiency in a sample of children with probable DCD (pDCD). Thirty-four children aged 8 to 12 years (17 children with pDCD and 17 age-matched controls) completed the hand rotation task, a well-validated measure of MI, and a double-step reaching task (DSRT), a protocol commonly adopted to infer one's capacity for correcting reaching online. As per previous research, children with pDCD demonstrated inefficiencies in their ability to generate internal action representations and correct their reaching online, demonstrated by inefficient hand rotation performance and slower correction to the reach trajectory following unexpected target perturbation during the DSRT compared to age-matched controls. Critically, hierarchical moderating regression demonstrated that even after general reaching ability was controlled for, MI efficiency was a significant predictor of reaching correction efficiency, a relationship that was constant across groups. Ours is the first study to provide direct pilot evidence in support of the view that a decreased capacity for online control of reaching typical of DCD may be associated with inefficiencies generating and/or using internal representations of action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the influence of inhibitory load on online motor control in children. A sample of 129 school children was tested: younger, mid-age, and older children. Online control was assessed using a double-step perturbation paradigm across three trail types: non-jump, jump, and anti-jump. Results show that mid-aged children were able to implement online adjustments to jump trials as quickly as older children, but their performance on anti-jump trials regressed toward younger children. This suggests that rapid unfolding of executive systems during middle childhood may constrain the flexibility with which online control can be implemented, particularly when inhibitory demands are imposed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For children with Developmental Coordination Disorder (DCD), the real-time coupling between frontal executive function and online motor control has not been explored despite reported deficits in each domain. The aim of the present study was to investigate how children with DCD enlist online control under task constraints that compel the need for inhibitory control. A total of 129 school children were sampled from mainstream primary schools. Forty-two children who met research criteria for DCD were compared with 87 typically developing controls on a modified double-jump reaching task. Children within each skill group were divided into three age bands: younger (6-7 years), mid-aged (8-9), and older (10-12). Online control was compared between groups as a function of trial type (non-jump, jump, anti-jump). Overall, results showed that while movement times were similar between skill groups under simple task constraints (non-jump), on perturbation (or jump) trials the DCD group were significantly slower than controls and corrected trajectories later. Critically, the DCD group was further disadvantaged by anti-jump trials where inhibitory control was required; however, this effect reduced with age. While coupling online control and executive systems is not well developed in younger and mid-aged children, there is evidence of age-appropriate coupling in older children. Longitudinal data are needed to clarify this intriguing finding. The theoretical and applied implications of these results are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of scattering of neutral fermions in two-dimensional spacetime is approached with a pseudoscalar potential step in the Dirac equation. Some unexpected aspects of the solutions beyond the absence of Klein's paradox are presented. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength. Added plausibility for the existence of bound-state solutions in a pseudoscalar double-step potential found in a recent Letter is given. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.