999 resultados para Double repair
Resumo:
The availability of a network strongly depends on the frequency of service outages and the recovery time for each outage. The loss of network resources includes complete or partial failure of hardware and software components, power outages, scheduled maintenance such as software and hardware, operational errors such as configuration errors and acts of nature such as floods, tornadoes and earthquakes. This paper proposes a practical approach to the enhancement of QoS routing by means of providing alternative or repair paths in the event of a breakage of a working path. The proposed scheme guarantees that every Protected Node (PN) is connected to a multi-repair path such that no further failure or breakage of single or double repair paths can cause any simultaneous loss of connectivity between an ingress node and an egress node. Links to be protected in an MPLS network are predefined and an LSP request involves the establishment of a working path. The use of multi-protection paths permits the formation of numerous protection paths allowing greater flexibility. Our analysis will examine several methods including single, double and multi-repair routes and the prioritization of signals along the protected paths to improve the Quality of Service (QoS), throughput, reduce the cost of the protection path placement, delay, congestion and collision.
Resumo:
This paper proposes a practical approach to the enhancement of Quality of Service (QoS) routing by means of providing alternative or repair paths in the event of a breakage of a working path. The proposed scheme guarantees that every Protected Node (PN) is connected to a multi-repair path such that no further failure or breakage of single or double repair paths can cause any simultaneous loss of connectivity between an ingress node and an egress node. Links to be protected in an MPLS network are predefined and a Label Switched path (LSP) request involves the establishment of a working path. The use of multi-protection paths permits the formation of numerous protection paths allowing greater flexibility. Our analysis examined several methods including single, double and multi-repair routes and the prioritization of signals along the protected paths to improve the Quality of Service (QoS), throughput, reduce the cost of the protection path placement, delay, congestion and collision. Results obtained indicated that creating multi-repair paths and prioritizing packets reduces delay and increases throughput in which case the delays at the ingress/egress LSPs were low compared to when the signals had not been classified. Therefore the proposed scheme provided a means to improve the QoS in path restoration in MPLS using available network resources. Prioritizing the packets in the data plane has revealed that the amount of traffic transmitted using a medium and low priority Label Switch Paths (LSPs) does not have any impact on the explicit rate of the high priority LSP in which case the problem of a knock-on effect is eliminated.
Resumo:
Objective: to investigate the use of local anaesthetics, in the presence or absence of vasoconstrictors, for perineal repair during spontaneous delivery. Design: double-blind, randomised-controlled trial. Setting: a birth centre, in the city of Sao Paulo, Brazil. Participants: from June to December 2004, a total of 96 women were allocated into three groups (first-degree perineal lacerations, second-degree perineal lacerations or episiotomy), and treated with local anaesthesia (1% lidocaine or 1% lidocaine with epinephrine) (n = 16 per treatment per group). Interventions: an initial local infiltration of the anaesthetic solution was given so that episiotomy could be carried out (5 ml) and to suture spontaneous lacerations (1 ml), followed by repeated doses (1 ml) until pain was completely inhibited. Measurements and findings: the main outcome measurement was the volume of anaesthetic used during episiotomy and perineal suture. Our data suggest that the concomitant use of the vasoconstrictor resulted in a significantly lower average volume used in the treatment of first-degree (1 ml, 95% confidence interval (0) 0.4-1.6) and second-degree (3.7 ml, 95% CI 1.6-5.8) lacerations (p = 0.002 and 0.001, respectively). A 0.3 ml (95% CI 1.5-2.1) average decrease in anaesthetic volume was observed with episiotomy (p = 0.724). The maximum volume of anaesthetic used with and without vasoconstrictor was 1-2 ml in 95% and 3-4 ml in 50% of first-degree lacerations, respectively, and 1-6 ml in 88% and 7-15 ml in 81% of second-degree lacerations, respectively. For episiotomy, the maximum dose was 15 ml, regardless of anaesthetic solution used. Key conclusions: our data confirm the hypothesis that the use of anaesthetics in conjunction with vasoconstrictors is more effective than anaesthetics alone in the repair of perineal lacerations, but not for episiotomy. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Totally extraperitoneal laparoscopic hernia repair is an efficient but technically demanding procedure. As mechanisms of hernia recurrence may be related to these technical difficulties, we have modified a previously described double-mesh technique in an effort to simplify the procedure. Extraperitoneal laparoscopic hernia repairs were performed in 82 male and 17 female patients having inguinal, femoral, and recurrent bilateral hernias. A standard propylene mesh measuring 15 x 15 cm was cut into two pieces of 4 x 15 cm and 11 x 15 cm. The smaller mesh was placed over both inguinal rings without splitting. The larger mesh was then inserted over the first mesh and stapled to low-risk zones, reinforcing the large-vessel area and the nerve transition zone. The mean procedure duration was 60 minutes for unilateral and 100 minutes for bilateral hernia repair. Patients were discharged from the hospital within 48 hours. The mean postoperative follow-up was 22 months, with no recurrences, neuralgia, or bleeding complications. Over a 2-year period, this technique was found to be satisfactory without recurrences or significant complications. In our hands, this technique was easier to perform: it allows for a less than perfect positioning of the meshes and avoids most of the stapling to crucial zones.
Resumo:
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.
Resumo:
Monoubiquitination of the Fanconi anaemia protein FANCD2 is a key event leading to repair of interstrand cross-links. It was reported earlier that FANCD2 co-localizes with NBS1. However, the functional connection between FANCD2 and MRE11 is poorly understood. In this study, we show that inhibition of MRE11, NBS1 or RAD50 leads to a destabilization of FANCD2. FANCD2 accumulated from mid-S to G2 phase within sites containing single-stranded DNA (ssDNA) intermediates, or at sites of DNA damage, such as those created by restriction endonucleases and laser irradiation. Purified FANCD2, a ring-like particle by electron microscopy, preferentially bound ssDNA over various DNA substrates. Inhibition of MRE11 nuclease activity by Mirin decreased the number of FANCD2 foci formed in vivo. We propose that FANCD2 binds to ssDNA arising from MRE11-processed DNA double-strand breaks. Our data establish MRN as a crucial regulator of FANCD2 stability and function in the DNA damage response.
The role of double-stranded break repair in the creation of phenotypic diversity at cereal VRN1 loci
Resumo:
Nonhomologous repair of double-stranded breaks, although fundamental to the maintenance of genomic integrity in all eukaryotes, has received little attention as to its evolutionary consequences in the generation and selection of phenotypic diversity. Here we document the role of illegitimate recombination in the creation of novel alleles in VRN1 orthologs selected to confer adaptation to annual cropping systems in barley and wheat.
Resumo:
Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.
Resumo:
To use a new approach which provides, based on the widely used three-dimensional double-echo steady-state (DESS) sequence, in addition to the morphological information, the generation of biochemical T2 maps in one hybrid sequence.