931 resultados para Dorsal premammillary nucleus and cat exposure
Resumo:
The dorsal premammillary nucleus (PMd) is a hypothalamic structure that plays a pivotal role in the processing of predatory threats. Lesions of this nucleus virtually eliminate the expression of defensive responses to predator exposure. However, little is known about the neurotransmitters responsible for these behavioral responses. Since PMd neurons express ionotropic glutamate receptors and exposure to predators have been shown to activate nitric oxide (NO) producing cells in this region, the aim of this study was to verify the involvement of glutamate and NO-mediated neurotransmission in defensive reactions modulated by the PMd. We tested in male Wistar rats the hypothesis that intra-PMd injection of the NMDA receptor antagonist, AP7, or the NO synthase inhibitor, N-propyl-L-arginine (NP), would attenuate behavioral responses induced by cat exposure. Our results showed that both AP7 and NP significantly attenuated the behavioral responses induced by the live cat. These results suggest that the NMDA/NO pathway plays an important role in the behavioral responses mediated by the PMd. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this study we provide a comprehensive analysis of the hypothalamic activation pattern during exposure to a live predator or an environment previously associated with a predator. Our results support the view that hypothalamic processing of the actual and the contextual predatory threats share the same circuit, in which the dorsal premammillary nucleus (PMd) plays a pivotal role in amplifying this processing. To further understand the role of the PMd in the circuit organizing antipredatory defensive behaviors, we studied rats with cytotoxic PMd lesions during cat exposure and examined the pattern of behavioral responses as well as how PMd lesions affect the neuronal activation of the systems engaged in predator detection, in contextual memory formation and in defensive behavioral responses. Next, we investigated how pharmacological blockade of the PMd interferes with the conditioned behavioral responses to a context previously associated with a predator, and how this blockade affects the activation pattern of periaqueductal gray (PAG) sites likely to organize the conditioned behavioral responses to the predatory context. Behavioral observations indicate that the PMd interferes with both unconditioned and conditioned antipredatory defensive behavior. Moreover, we have shown that the PMd influences the activation of its major projecting targets, i.e. the ventral part of the anteromedial thalamic nucleus which is likely to influence mnemonic processing, and PAG sites involved in the expression of antipredatory unconditioned and conditioned behavioral responses. Of particular relevance, this work provides evidence to elucidate the basic organization of the neural circuits integrating unconditioned and contextual conditioned responses to predatory threats.
Resumo:
In the present work, we sought to mimic the internal state changes in response to a predator threat by pharmacologically stimulating the brain circuit involved in mediating predator fear responses, and explored whether this stimulation would be a valuable unconditioned stimulus (US) in an olfactory fear conditioning paradigm (OFC). The dorsal premammillary nucleus (PMd) is a key brain structure in the neural processing of anti-predatory defensive behavior and has also been shown to mediate the acquisition and expression of anti-predatory contextual conditioning fear responses. Rats were conditioned by pairing the US, which was an intra-PMd microinjection of isoproterenol (ISO; beta-adrenoceptor agonist), with amyl acetate odor-the conditioned stimulus (CS). ISO (10 and 40 nmol) induced the acquisition of the OFC and the second-order association by activation of beta-1 receptors in the PMd. Furthermore, similar to what had been found for contextual conditioning to a predator threat, atenolol (beta-1 receptor antagonist) in the PMd also impaired the acquisition and expression of OFC promoted by ISO. Considering the strong glutamatergic projections from the PMd to the dorsal periaqueductal gray (dPAG), we tested how the glutamatergic blockade of the dPAG would interfere with the OFC induced by ISO. Accordingly, microinjections of NMDA receptor antagonist (AP5, 6 nmol) into the dPAG were able to block both the acquisition, and partially, the expression of the OFC. In conclusion, we have found that PMd beta-1 adrenergic stimulation is a good model to mimic predatory threat-induced internal state changes, and works as a US able to mobilize the same systems involved in the acquisition and expression of predator-related contextual conditioning. Neuropsychopharmacology (2011) 36, 926-939; doi:10.1038/npp.2010.231; published online 5 January 2011
Resumo:
The dorsal premammillary nucleus (PMd) has a critical role on the expression of defensive responses to predator odor. Anatomical evidence suggests that the PMd should also modulate memory processing through a projecting branch to the anterior thalamus. By using a pharmacological blockade of the PMd with the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP5), we were able to confirm its role in the expression of unconditioned defensive responses, and further revealed that the nucleus is also involved in influencing associative mechanisms linking predatory threats to the related context. We have also tested whether olfactory fear conditioning, using coffee odor as CS, would be useful to model predator odor. Similar to cat odor, shock-paired coffee odor produced robust defensive behavior during exposure to the odor and to the associated context. Shock-paired coffee odor also up-regulated Fos expression in the PMd, and, as with cat odor, we showed that this nucleus is involved in the conditioned defensive responses to the shock-paired coffee odor and the contextual responses to the associated environment. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) is one of the most responsive hypothalamic sites during exposure to a predator or its odor, and to a context previously associated with a predatory threat; and lesions or pharmacological inactivation centered therein severely reduced the anti-predatory defensive responses. Previous studies have shown that beta adrenergic transmission in the PMd seems critical to the expression of fear responses to predatory threats. In the present study, we have investigated the putative sources of catecholaminergic inputs to the PMd. To this end, we have first described the general pattern of catecholaminergic innervation of the PMd by examining the distribution and morphology of the tyrosine hydroxylase (TH) immunoreactive fibers in the nucleus; and next, combining Fluoro Gold (FG) tracing experiments and TH immunostaining, we determined the putative sources of catecholaminergic inputs to the nucleus. Our results revealed that the PMd presents a moderately dense plexus of catecholaminergic fibers that seems to encompass the rostral pole and ventral border of the nucleus. Combining the results of the FG tract-tracing and TH immunostaining, we observed that the locus coeruleus was the sole brain site that contained double FG and TH immunostained cells. In summary, the evidence suggests that the locus coeruleus is seemingly a part of the circuit responding to predatory threats, and, as shown by the present results, is the sole source of catecholaminergic inputs to the PMd, providing noradrenergic inputs to the nucleus, which, by acting via beta adrenoceptor, seems to be critical for the expression of anti-predatory responses. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Previous findings point to the involvement of the dorsal raphe nucleus (DRN) and dorsal periaqueductal gray (dPAG) serotonergic receptors in the mediation of defensive responses that are associated with specific subtypes of anxiety disorders. These studies have mostly been conducted with rats tested in the elevated T-maze, an experimental model of anxiety that was developed to allow the measurement, in the same animal, of two behaviors mentioned: inhibitory avoidance and one-way escape. Such behavioral responses have been respectively related to generalized anxiety disorder (GAD) and panic disorder (PD). In order to assess the generality of these findings, in the current study we investigated the effects of the injection of 5-HT-related drugs into the DRN and dPAG of another rodent species, mouse, on the mouse defense test battery (MDTB), a test of a range of defensive behaviors to an unconditioned threat, a predator. Male CD-1 mice were tested in the MDTB after intra-DRN administration of the 5-HT(1A) receptor antagonist WAY-100635 or after intra-dPAG injection of two serotonergic agonists, the 5-HT1A receptor agonist 8-OH-DPAT and the 5-HT(2A/2C) receptor agonist DOI. Intra-DRN injection of WAY-100635 did not change behavioral responses of mice confronted with a rat in the MDTB. In the dPAG, both 8-OH-DPAT and DOI consistently impaired mouse escape behavior assessed in the MDTB. Intra-dPAG infusion of 8-OH-DPAT also decreased measures of mouse risk assessment in the rat exposure test. In conclusion, the current findings are in partial agreement with previous results obtained with rats tested in the elevated T-maze. Although there is a high level of similarity between the behavioral effects obtained in rats (elevated T-maze) and mice (MDTB and RET) with the infusion of 5-HT agonists into the dPAG, the same is not true regarding the effects of blockade of DRN 5-HT(1A) receptors in these rodent species. These data suggest that there may be differences between mice and rats regarding the involvement of the DRN in the mediation of defensive behaviors. (C) 2010 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Studies m hum ins and rodents indicate that a minimum amount of stored energy is required for normal pubertal development The adipocyte-derived hormone leptin is a key metabolic signal to the neuroendocrine reproductive axis Humans and mice lacking leptin or the leptin receptor (LepR) (ob/ob and db/db mice, respectively) are infertile and fail to enter puberty Leptin administration to leptin-deficient subjects and ob/ob mice induces puberty and restores fertility, but the exact site or sites of leptin action are unclear Here, we found that genetic deletion of LepR selectively from hypothalamic Kiss1 neurons m mice had no effect on puberty or fertility, indicating that direct leptin signaling m Kiss1 neurons is not required for these processes However, bilateral lesions of the ventral premammillary nucleus (PMV) of ob/ob mice blunted the ability of exogenous leptin to induce sexual maturation Moreover, unilateral reexpression of endogenous LepR m PMV neurons was sufficient to induce puberty and improve fertility m female LepR-null mice This LepR reexpression also normalized the increased hypothalamic GnRH content characteristic of leptin-signaling deficiency These data suggest that the PMV is a key site for leptin's permissive action at the onset of puberty and support the hypothesis that the multiple actions of leptin to control metabolism and reproduction at e anatomically dissociated
Resumo:
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the Activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the Activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Prior experience with the elevated plus maze (EPM) increases the avoidance of rodents to the open arms and impairs the anxiolytic-like effects of benzodiazepines on the traditional behaviors evaluated upon re-exposure to the maze, a phenomenon known as one-trial tolerance. Risk assessment behaviors are also sensitive to benzodiazepines. During re-exposure to the maze, these behaviors reinstate the information-processing initiated during the first experience, and the detection of danger generates stronger open-arm avoidance. The present study investigated whether the benzodiazepine midazolam alters risk assessment behaviors and Fos protein distribution associated with test and retest sessions in the EPM. Naive or maze-experienced Wistar rats received either saline or midazolam (0.5 mg/kg i.p.) and were subjected to the EPM. Midazolam caused the usual effects on exploratory behavior, increasing exploratory activity of naive rats in the open arms and producing no effects on these conventional measures in rats re-exposed to the maze. Risk assessment behaviors, however, were sensitive to the benzodiazepine during both sessions, indicating anxiolytic-like effects of the drug in both conditions. Fos immunohistochemistry showed that midazolam injections were associated with a distinct pattern of action when administered before the test or retest session, and the anterior cingulate cortex, area 1 (Cg1), was the only structure targeted by the benzodiazepine in both situations. Bilateral infusions of midazolam into the Cg1 replicated the behavioral effects of the drug injected systemically, suggesting that this area is critically involved in the anxiolytic-like effects of benzodiazepines, although the behavioral strategy adopted by the animals appears to depend on the previous knowledge of the threatening environment. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present study, we investigated the role of noradrenergic transmission in unconditioned and conditioned responses to predatory threats. First, we examined the effects of systemically injected beta-blockers on unconditioned and contextual conditioned response to cat odor. The centrally acting beta-blocker (propranolol) was able to impair unconditioned responses, as well as the acquisition of the contextual fear to cat odor; however, the peripherally acting (nadolol) was not effective. Next, we examined the neural substrate underlying the noradrenergic modulation of the defensive response to cat odor and focused on the dorsal premammillary nucleus (PMd), because it represents the hypothalamic site most responsive to predatory threats and, at the same time, presents a dense plexus of noradrenergic fibers. We were able to see that propranolol significantly reduced PMd-Fos expression in response to cat odor and that beta-adrenoceptor blockade in the PMd, before cat odor exposure, reduced defensive responses to the cat odor and to the cat odor-related environment. We have also shown that beta-adrenoceptor blockade in the PMd, before the exposure to cat odor-related context, impaired the contextual conditioned responses. Overall, the present results provide convincing evidence suggesting that central noradrenergic mediation is critical for the expression of unconditioned and contextual conditioned antipredatory responses. We have further shown that the PMd appears to be an important locus to mediate these beta-adrenoceptor effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.